TrajOptProblem¶
openscvx.trajoptproblem.TrajOptProblem.__init__(dynamics: Dynamics, constraints: List[Union[CTCSConstraint, NodalConstraint]], x: State, u: Control, N: int, idx_time: int, params: Optional[dict] = None, dynamics_prop: Optional[callable] = None, x_prop: State = None, scp: Optional[ScpConfig] = None, dis: Optional[DiscretizationConfig] = None, prp: Optional[PropagationConfig] = None, sim: Optional[SimConfig] = None, dev: Optional[DevConfig] = None, cvx: Optional[ConvexSolverConfig] = None, licq_min=0.0, licq_max=0.0001, time_dilation_factor_min=0.3, time_dilation_factor_max=3.0)
¶
The primary class in charge of compiling and exporting the solvers
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dynamics
|
Dynamics
|
Dynamics function decorated with @dynamics |
required |
constraints
|
List[Union[CTCSConstraint, NodalConstraint]]
|
List of constraints decorated with @ctcs or @nodal |
required |
idx_time
|
int
|
Index of the time variable in the state vector |
required |
N
|
int
|
Number of segments in the trajectory |
required |
time_init
|
float
|
Initial time for the trajectory |
required |
x_guess
|
ndarray
|
Initial guess for the state trajectory |
required |
u_guess
|
ndarray
|
Initial guess for the control trajectory |
required |
initial_state
|
BoundaryConstraint
|
Initial state constraint |
required |
final_state
|
BoundaryConstraint
|
Final state constraint |
required |
x_max
|
ndarray
|
Upper bound on the state variables |
required |
x_min
|
ndarray
|
Lower bound on the state variables |
required |
u_max
|
ndarray
|
Upper bound on the control variables |
required |
u_min
|
ndarray
|
Lower bound on the control variables |
required |
dynamics_prop
|
Optional[callable]
|
Propagation dynamics function decorated with @dynamics |
None
|
initial_state_prop
|
Propagation initial state constraint |
required | |
scp
|
Optional[ScpConfig]
|
SCP configuration object |
None
|
dis
|
Optional[DiscretizationConfig]
|
Discretization configuration object |
None
|
prp
|
Optional[PropagationConfig]
|
Propagation configuration object |
None
|
sim
|
Optional[SimConfig]
|
Simulation configuration object |
None
|
dev
|
Optional[DevConfig]
|
Development configuration object |
None
|
cvx
|
Optional[ConvexSolverConfig]
|
Convex solver configuration object |
None
|
Returns:
Type | Description |
---|---|
None |
ScpConfig¶
openscvx.config.ScpConfig.__init__(n: Optional[int] = None, k_max: int = 200, w_tr: float = 1.0, lam_vc: float = 1.0, ep_tr: float = 0.0001, ep_vb: float = 0.0001, ep_vc: float = 1e-08, lam_cost: float = 0.0, lam_vb: float = 0.0, uniform_time_grid: bool = False, cost_drop: int = -1, cost_relax: float = 1.0, w_tr_adapt: float = 1.0, w_tr_max: Optional[float] = None, w_tr_max_scaling_factor: Optional[float] = None)
¶
Configuration class for Sequential Convex Programming (SCP).
This class defines the parameters used to configure the SCP solver. You will very likely need to modify the weights for your problem. Please refer to my guide here for more information.
Attributes:
Name | Type | Description |
---|---|---|
n |
int
|
The number of discretization nodes. Defaults to |
k_max |
int
|
The maximum number of SCP iterations. Defaults to 200. |
w_tr |
float
|
The trust region weight. Defaults to 1.0. |
lam_vc |
float
|
The penalty weight for virtual control. Defaults to 1.0. |
ep_tr |
float
|
The trust region convergence tolerance. Defaults to 1e-4. |
ep_vb |
float
|
The boundary constraint convergence tolerance. Defaults to 1e-4. |
ep_vc |
float
|
The virtual constraint convergence tolerance. Defaults to 1e-8. |
lam_cost |
float
|
The weight for original cost. Defaults to 0.0. |
lam_vb |
float
|
The weight for virtual buffer. This is only used if there are nonconvex nodal constraints present. Defaults to 0.0. |
uniform_time_grid |
bool
|
Whether to use a uniform time grid.
Defaults to |
cost_drop |
int
|
The number of iterations to allow for cost stagnation before termination. Defaults to -1 (disabled). |
cost_relax |
float
|
The relaxation factor for cost reduction. Defaults to 1.0. |
w_tr_adapt |
float
|
The adaptation factor for the trust region weight. Defaults to 1.0. |
w_tr_max |
float
|
The maximum allowable trust region weight.
Defaults to |
w_tr_max_scaling_factor |
float
|
The scaling factor for the maximum
trust region weight. Defaults to |
DiscretizationConfig¶
openscvx.config.DiscretizationConfig.__init__(dis_type: str = 'FOH', custom_integrator: bool = False, solver: str = 'Tsit5', args: Optional[dict] = None, atol: float = 0.001, rtol: float = 1e-06)
¶
Configuration class for discretization settings.
This class defines the parameters required for discretizing system dynamics.
Main arguments: These are the arguments most commonly used day-to-day.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dis_type
|
str
|
The type of discretization to use (e.g., "FOH" for First-Order Hold). Defaults to "FOH". |
'FOH'
|
custom_integrator
|
bool
|
This enables our custom fixed-step RK45 algorithm. This tends to be faster than Diffrax but unless you're going for speed, it's recommended to stick with Diffrax for robustness and other solver options. Defaults to False. |
False
|
solver
|
str
|
Not used if custom_integrator is enabled. Any choice of solver in Diffrax is valid, please refer here, How to Choose a Solver. Defaults to "Tsit5". |
'Tsit5'
|
Other arguments: These arguments are less frequently used, and for most purposes you shouldn't need to understand these.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
args
|
Dict
|
Additional arguments to pass to the solver which can be found here. Defaults to an empty dictionary. |
None
|
atol
|
float
|
Absolute tolerance for the solver. Defaults to 1e-3. |
0.001
|
rtol
|
float
|
Relative tolerance for the solver. Defaults to 1e-6. |
1e-06
|
PropagationConfig¶
openscvx.config.PropagationConfig.__init__(inter_sample: int = 30, dt: float = 0.01, solver: str = 'Dopri8', max_tau_len: int = 1000, args: Optional[dict] = None, atol: float = 0.001, rtol: float = 1e-06)
¶
Configuration class for propagation settings.
This class defines the parameters required for propagating the nonlinear system dynamics using the optimal control sequence.
Main arguments: These are the arguments most commonly used day-to-day.
Other arguments: The solver should likely not be changed as it is a high accuracy 8th-order Runge-Kutta method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
inter_sample
|
int
|
How dense the propagation within multishot discretization should be. Defaults to 30. |
30
|
dt
|
float
|
The time step for propagation. Defaults to 0.1. |
0.01
|
solver
|
str
|
The numerical solver to use for propagation (e.g., "Dopri8"). Defaults to "Dopri8". |
'Dopri8'
|
max_tau_len
|
int
|
The maximum length of the time vector for propagation. Defaults to 1000. |
1000
|
args
|
Dict
|
Additional arguments to pass to the solver. Defaults to an empty dictionary. |
None
|
atol
|
float
|
Absolute tolerance for the solver. Defaults to 1e-3. |
0.001
|
rtol
|
float
|
Relative tolerance for the solver. Defaults to 1e-6. |
1e-06
|
SimConfig¶
openscvx.config.SimConfig.__init__(x: State, x_prop: State, u: Control, total_time: float, idx_x_true: slice, idx_x_true_prop: slice, idx_u_true: slice, idx_t: slice, idx_y: slice, idx_y_prop: slice, idx_s: slice, save_compiled: bool = True, ctcs_node_intervals: Optional[list] = None, constraints_ctcs: Optional[list[Callable]] = None, constraints_nodal: Optional[list[Callable]] = None, n_states: Optional[int] = None, n_states_prop: Optional[int] = None, n_controls: Optional[int] = None, scaling_x_overrides: Optional[list] = None, scaling_u_overrides: Optional[list] = None)
¶
Configuration class for simulation settings.
This class defines the parameters required for simulating a trajectory optimization problem.
Main arguments: These are the arguments most commonly used day-to-day.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
State
|
State object, must have .min and .max attributes for bounds. |
required |
x_prop
|
State
|
Propagation state object, must have .min and .max attributes for bounds. |
required |
u
|
Control
|
Control object, must have .min and .max attributes for bounds. |
required |
total_time
|
float
|
The total simulation time. |
required |
idx_x_true
|
slice
|
Slice for true state indices. |
required |
idx_x_true_prop
|
slice
|
Slice for true propagation state indices. |
required |
idx_u_true
|
slice
|
Slice for true control indices. |
required |
idx_t
|
slice
|
Slice for time index. |
required |
idx_y
|
slice
|
Slice for constraint violation indices. |
required |
idx_y_prop
|
slice
|
Slice for propagation constraint violation indices. |
required |
idx_s
|
slice
|
Slice for time dilation index. |
required |
save_compiled
|
bool
|
If True, save and reuse compiled solver functions. Defaults to True. |
True
|
ctcs_node_intervals
|
list
|
Node intervals for CTCS constraints. |
None
|
constraints_ctcs
|
list
|
List of CTCS constraints. |
None
|
constraints_nodal
|
list
|
List of nodal constraints. |
None
|
n_states
|
int
|
The number of state variables. Defaults to
|
None
|
n_states_prop
|
int
|
The number of propagation state
variables. Defaults to |
None
|
n_controls
|
int
|
The number of control variables. Defaults
to |
None
|
scaling_x_overrides
|
list
|
List of (upper_bound, lower_bound, idx) for custom state scaling. Each can be scalar or array, idx can be int, list, or slice. |
None
|
scaling_u_overrides
|
list
|
List of (upper_bound, lower_bound, idx) for custom control scaling. Each can be scalar or array, idx can be int, list, or slice. |
None
|
Note
You can specify custom scaling for specific states/controls using scaling_x_overrides and scaling_u_overrides. Any indices not covered by overrides will use the default min/max bounds.
ConvexSolverConfig¶
openscvx.config.ConvexSolverConfig.__init__(solver: str = 'QOCO', solver_args: Optional[dict] = None, cvxpygen: bool = False, cvxpygen_override: bool = False)
¶
Configuration class for convex solver settings.
This class defines the parameters required for configuring a convex solver.
These are the arguments most commonly used day-to-day. Generally I have found QOCO to be the most performant of the CVXPY solvers for these types of problems (I do have a bias as the author is from my group) and can handle up to SOCP's. CLARABEL is also a great option with feasibility checking and can handle a few more problem types. CVXPYGen is also great if your problem isn't too large. I have found qocogen to be the most performant of the CVXPYGen solvers.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
solver
|
str
|
The name of the CVXPY solver to use. A list of options can be found here. Defaults to "QOCO". |
'QOCO'
|
solver_args
|
dict
|
Ensure you are using the correct arguments for your solver as they are not all common. Additional arguments to configure the solver, such as tolerances. Defaults to {"abstol": 1e-6, "reltol": 1e-9}. |
None
|
cvxpygen
|
bool
|
Whether to enable CVXPY code generation for the solver. Defaults to False. |
False
|
DevConfig¶
openscvx.config.DevConfig.__init__(profiling: bool = False, debug: bool = False, printing: bool = True)
¶
Configuration class for development settings.
This class defines the parameters used for development and debugging purposes.
Main arguments: These are the arguments most commonly used day-to-day.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
profiling
|
bool
|
Whether to enable profiling for performance analysis. Defaults to False. |
False
|
debug
|
bool
|
Disables all precompilation so you can place breakpoints and inspect values. Defaults to False. |
False
|
printing
|
bool
|
Whether to enable printing during development. Defaults to True. |
True
|