Skip to content

Dubins Car

Dubins car path planning with obstacle avoidance.

This example demonstrates minimum-time path planning for a Dubins car (car-like vehicle with minimum turning radius) navigating around a circular obstacle. The problem includes:

  • 2D position and heading dynamics
  • Speed and angular rate control inputs
  • Circular obstacle avoidance constraint
  • Minimal time objective with free final heading
  • Parameter updates for multiple scenarios

File: examples/car/dubins_car.py

import jax.numpy as jnp
import numpy as np

import openscvx as ox
from examples.plotting import plot_dubins_car
from openscvx import Problem

n = 8
total_time = 1.2  # Total simulation time

# Define state components
position = ox.State("position", shape=(2,))  # 2D position [x, y]
position.min = np.array([-5.0, -5.0])
position.max = np.array([5.0, 5.0])
position.initial = np.array([0, -2])
position.final = np.array([0, 2])
position.guess = np.linspace(position.initial, position.final, n)

theta = ox.State("theta", shape=(1,))  # Heading angle
theta.min = np.array([-2 * jnp.pi])
theta.max = np.array([2 * jnp.pi])
theta.initial = np.array([0])
theta.final = [ox.Free(0)]
theta.guess = np.zeros((n, 1))

# Define control components
speed = ox.Control("speed", shape=(1,))  # Forward speed
speed.min = np.array([0])
speed.max = np.array([10])
speed.guess = np.zeros((n, 1))

angular_rate = ox.Control("angular_rate", shape=(1,))  # Angular velocity
angular_rate.min = np.array([-5])
angular_rate.max = np.array([5])
angular_rate.guess = np.zeros((n, 1))

# Define list of all states and controls
states = [position, theta]
controls = [speed, angular_rate]

# Define Parameters with initial values for obstacle radius and center
obs_center = ox.Parameter("obs_center", shape=(2,), value=np.array([-2.01, 0.0]))
obs_radius = ox.Parameter("obs_radius", shape=(), value=1.0)

# Generate box constraints for all states
constraints = []
for state in states:
    constraints.extend([ox.ctcs(state <= state.max), ox.ctcs(state.min <= state)])

# Add obstacle avoidance constraint
constraints.append(ox.ctcs(obs_radius <= ox.linalg.Norm(position - obs_center)))


# Define dynamics as dictionary mapping state names to their derivatives
dynamics = {
    "position": ox.Concat(
        speed[0] * ox.Sin(theta[0]),  # x_dot
        speed[0] * ox.Cos(theta[0]),  # y_dot
    ),
    "theta": angular_rate[0],
}


# Build the problem (parameters auto-collected from Parameter objects)
time = ox.Time(
    initial=0.0,
    final=ox.Minimize(total_time),
    min=0.0,
    max=20,
)

problem = Problem(
    dynamics=dynamics,
    states=states,
    controls=controls,
    time=time,
    constraints=constraints,
    N=n,
    licq_max=1e-8,
    time_dilation_factor_min=0.02,
)

# Set solver parameters
problem.settings.prp.dt = 0.01
# problem.settings.scp.w_tr_adapt = 1.3
problem.settings.scp.w_tr = 1e0
problem.settings.scp.lam_cost = 4e1
problem.settings.scp.lam_vc = 1e3
problem.settings.scp.uniform_time_grid = True

# Enable CLI printing for optimization iterations
problem.settings.dev.printing = True

# problem.settings.cvx.cvxpygen = True
# problem.settings.cvx.solver = "qocogen"
problem.settings.cvx.solver_args = {}
# problem.settings.cvx.cvxpygen_override = True


plotting_dict = {
    "obs_radius": problem.parameters["obs_radius"],
    "obs_center": problem.parameters["obs_center"],
}

if __name__ == "__main__":
    problem.initialize()
    results = problem.solve()
    results = problem.post_process()
    results.update(plotting_dict)

    plot_dubins_car(results, problem.settings).show()

    # Second run with different parameters
    problem.parameters["obs_center"] = np.array([0.5, 0.0])
    total_time = 0.7  # Adjust total time for second run
    problem.settings.scp.lam_cost = 1e-1  # Disable minimal time objective for second run
    problem.settings.scp.w_tr = 1e0
    problem.settings.scp.lam_vc = 1e2  # Adjust virtual control weight
    position.guess = np.linspace([0, -2], [0, 2], n)
    theta.guess = np.zeros((n, 1))
    speed.guess = np.zeros((n, 1))
    angular_rate.guess = np.zeros((n, 1))

    plotting_dict["obs_center"] = np.array([0.5, 0.0])

    results = problem.solve()
    results = problem.post_process()
    results.update(plotting_dict)
    plot_dubins_car(results, problem.settings).show()