optimization_results
OptimizationResults
dataclass
¶
Structured container for optimization results from the Successive Convexification (SCP) solver.
This class provides a type-safe and organized way to store and access optimization results, replacing the previous dictionary-based approach. It includes core optimization data, iteration history for convergence analysis, post-processing results, and flexible storage for plotting and application-specific data.
Attributes:
| Name | Type | Description |
|---|---|---|
converged |
bool
|
Whether the optimization successfully converged |
t_final |
float
|
Final time of the optimized trajectory |
x_guess |
ndarray
|
Optimized state trajectory at discretization nodes, shape (N, n_states) |
u_guess |
ndarray
|
Optimized control trajectory at discretization nodes, shape (N, n_controls) |
nodes |
dict[str, ndarray]
|
Dictionary mapping state/control names to arrays at optimization nodes. Includes both user-defined and augmented variables. |
trajectory |
dict[str, ndarray]
|
Dictionary mapping state/control names to arrays along the propagated trajectory. Added by post_process(). |
x_history |
list[ndarray]
|
State trajectories from each SCP iteration |
u_history |
list[ndarray]
|
Control trajectories from each SCP iteration |
discretization_history |
list[ndarray]
|
Time discretization from each iteration |
J_tr_history |
list[ndarray]
|
Trust region cost history |
J_vb_history |
list[ndarray]
|
Virtual buffer cost history |
J_vc_history |
list[ndarray]
|
Virtual control cost history |
t_full |
Optional[ndarray]
|
Full time grid for interpolated trajectory |
x_full |
Optional[ndarray]
|
Interpolated state trajectory on full time grid |
u_full |
Optional[ndarray]
|
Interpolated control trajectory on full time grid |
cost |
Optional[float]
|
Total cost of the optimized trajectory |
ctcs_violation |
Optional[ndarray]
|
Continuous-time constraint violations |
plotting_data |
dict[str, Any]
|
Flexible storage for plotting and application data |
Source code in openscvx/algorithms/optimization_results.py
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 | |
u: np.ndarray
property
¶
Optimal control trajectory at discretization nodes.
Returns the final converged solution from the SCP iteration history.
Returns:
| Type | Description |
|---|---|
ndarray
|
Control trajectory array, shape (N, n_controls) |
x: np.ndarray
property
¶
Optimal state trajectory at discretization nodes.
Returns the final converged solution from the SCP iteration history.
Returns:
| Type | Description |
|---|---|
ndarray
|
State trajectory array, shape (N, n_states) |
get(key: str, default: Any = None) -> Any
¶
Get a value from the results, similar to dict.get().
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
key
|
str
|
The key to look up |
required |
default
|
Any
|
Default value if key is not found |
None
|
Returns:
| Type | Description |
|---|---|
Any
|
The value associated with the key, or default if not found |
Source code in openscvx/algorithms/optimization_results.py
to_dict() -> dict[str, Any]
¶
Convert the results to a dictionary for backward compatibility.
Returns:
| Type | Description |
|---|---|
dict[str, Any]
|
Dictionary representation of the results |
Source code in openscvx/algorithms/optimization_results.py
update(other: dict[str, Any])
¶
Update the results with additional data from a dictionary.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
other
|
dict[str, Any]
|
Dictionary containing additional data |
required |
Source code in openscvx/algorithms/optimization_results.py
update_plotting_data(**kwargs)
¶
Update the plotting data with additional information.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
**kwargs
|
Key-value pairs to add to plotting_data |
{}
|