Skip to content

problem

Core optimization problem interface for trajectory optimization.

This module provides the Problem class, the main entry point for defining and solving trajectory optimization problems using Sequential Convex Programming (SCP).

Example

The prototypical flow is to define a problem, then initialize, solve, and post-process the results

problem = Problem(dynamics, constraints, states, controls, N, time)
problem.initialize()
result = problem.solve()
result = problem.post_process()

Problem

Source code in openscvx/problem.py
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
class Problem:
    def __init__(
        self,
        dynamics: dict,
        constraints: List[Union[Constraint, CTCS]],
        states: List[State],
        controls: List[Control],
        N: int,
        time: Time,
        dynamics_prop: Optional[dict] = None,
        states_prop: Optional[List[State]] = None,
        licq_min=0.0,
        licq_max=1e-4,
        time_dilation_factor_min=0.3,
        time_dilation_factor_max=3.0,
    ):
        """
        The primary class in charge of compiling and exporting the solvers

        Args:
            dynamics (dict): Dictionary mapping state names to their dynamics expressions.
                Each key should be a state name, and each value should be an Expr
                representing the derivative of that state.
            constraints (List[Union[CTCSConstraint, NodalConstraint]]):
                List of constraints decorated with @ctcs or @nodal
            states (List[State]): List of State objects representing the state variables.
                May optionally include a State named "time" (see time parameter below).
            controls (List[Control]): List of Control objects representing the control variables
            N (int): Number of segments in the trajectory
            time (Time): Time configuration object with initial, final, min, max.
                Required. If including a "time" state in states, the Time object will be ignored
                and time properties should be set on the time State object instead.
            dynamics_prop (dict, optional): Dictionary mapping EXTRA state names to their
                dynamics expressions for propagation. Only specify additional states beyond
                optimization states (e.g., {"distance": speed}). Do NOT duplicate optimization
                state dynamics here.
            states_prop (List[State], optional): List of EXTRA State objects for propagation only.
                Only specify additional states beyond optimization states. Used with dynamics_prop.
            licq_min: Minimum LICQ constraint value
            licq_max: Maximum LICQ constraint value
            time_dilation_factor_min: Minimum time dilation factor
            time_dilation_factor_max: Maximum time dilation factor

        Returns:
            None

        Note:
            There are two approaches for handling time:
            1. Auto-create (simple): Don't include "time" in states, provide Time object
            2. User-provided (for time-dependent constraints): Include "time" State in states and
               in dynamics dict, don't provide Time object
        """

        # Symbolic Preprocessing & Augmentation
        self.symbolic: SymbolicProblem = preprocess_symbolic_problem(
            dynamics=dynamics,
            constraints=ConstraintSet(unsorted=list(constraints)),
            states=states,
            controls=controls,
            N=N,
            time=time,
            licq_min=licq_min,
            licq_max=licq_max,
            time_dilation_factor_min=time_dilation_factor_min,
            time_dilation_factor_max=time_dilation_factor_max,
            dynamics_prop_extra=dynamics_prop,
            states_prop_extra=states_prop,
        )

        # Lower to JAX and CVXPy
        self._lowered: LoweredProblem = lower_symbolic_problem(self.symbolic)

        # Store parameters in two forms:
        self._parameters = self.symbolic.parameters  # Plain dict for JAX functions
        # Wrapper dict for user access that auto-syncs
        self._parameter_wrapper = ParameterDict(self, self._parameters, self.symbolic.parameters)

        # Setup SCP Configuration
        self.settings = Config(
            sim=SimConfig(
                x=self._lowered.x_unified,
                x_prop=self._lowered.x_prop_unified,
                u=self._lowered.u_unified,
                total_time=self._lowered.x_unified.initial[self._lowered.x_unified.time_slice][0],
                n_states=self._lowered.x_unified.initial.shape[0],
                n_states_prop=self._lowered.x_prop_unified.initial.shape[0],
                ctcs_node_intervals=self.symbolic.node_intervals,
            ),
            scp=ScpConfig(
                n=N,
                w_tr_max_scaling_factor=1e2,  # Maximum Trust Region Weight
            ),
            dis=DiscretizationConfig(),
            dev=DevConfig(),
            cvx=ConvexSolverConfig(),
            prp=PropagationConfig(),
        )

        # OCP construction happens in initialize() so users can modify
        # settings (like uniform_time_grid) between __init__ and initialize()
        self._optimal_control_problem: cp.Problem = None
        self._discretization_solver: callable = None
        self.cpg_solve = None

        # Set up emitter & thread only if printing is enabled
        if self.settings.dev.printing:
            self.print_queue = queue.Queue()
            self.emitter_function = lambda data: self.print_queue.put(data)
            self.print_thread = threading.Thread(
                target=printing.intermediate,
                args=(self.print_queue, self.settings),
                daemon=True,
            )
            self.print_thread.start()
        else:
            # no-op emitter; nothing ever gets queued or printed
            self.emitter_function = lambda data: None

        self.timing_init = None
        self.timing_solve = None
        self.timing_post = None

        # Compiled dynamics (vmapped versions, set in initialize())
        self._compiled_dynamics: Optional[Dynamics] = None
        self._compiled_dynamics_prop: Optional[Dynamics] = None

        # Compiled constraints (JIT-compiled versions, set in initialize())
        self._compiled_constraints: Optional[LoweredJaxConstraints] = None

        # Solver state (created fresh for each solve)
        self._state: Optional[SolverState] = None

        # Final solution state (saved after successful solve)
        self._solution: Optional[SolverState] = None

    @property
    def parameters(self):
        """Get the parameters dictionary.

        The returned dictionary automatically syncs to CVXPy when modified:
            problem.parameters["obs_radius"] = 2.0  # Auto-syncs to CVXPy
            problem.parameters.update({"gate_0_center": center})  # Also syncs

        Returns:
            ParameterDict: Special dict that syncs to CVXPy on assignment
        """
        return self._parameter_wrapper

    @parameters.setter
    def parameters(self, new_params: dict):
        """Replace the entire parameters dictionary and sync to CVXPy.

        Args:
            new_params: New parameters dictionary
        """
        self._parameters = dict(new_params)  # Create new plain dict
        self._parameter_wrapper = ParameterDict(self, self._parameters, new_params)
        self._sync_parameters()

    def _sync_parameters(self):
        """Sync all parameter values to CVXPy parameters."""
        if self._lowered.cvxpy_params is not None:
            for name, value in self._parameter_wrapper.items():
                if name in self._lowered.cvxpy_params:
                    self._lowered.cvxpy_params[name].value = value

    @property
    def state(self) -> Optional[SolverState]:
        """Access the current solver state.

        The solver state contains all mutable state from the SCP iterations,
        including current guesses, costs, weights, and history.

        Returns:
            SolverState if initialized, None otherwise

        Example:
            When using `Problem.step()` can use the state to check convergence _etc._

                problem.initialize()
                problem.step()
                print(f"Iteration {problem.state.k}, J_tr={problem.state.J_tr}")
        """
        return self._state

    @property
    def lowered(self) -> LoweredProblem:
        """Access the lowered problem containing JAX/CVXPy objects.

        Returns:
            LoweredProblem with dynamics, constraints, unified interfaces, and CVXPy vars
        """
        return self._lowered

    @property
    def x_unified(self):
        """Unified state interface (delegates to lowered.x_unified)."""
        return self._lowered.x_unified

    @property
    def u_unified(self):
        """Unified control interface (delegates to lowered.u_unified)."""
        return self._lowered.u_unified

    def initialize(self):
        """Compile dynamics, constraints, and solvers; prepare for optimization.

        This method vmaps dynamics, JIT-compiles constraints, builds the convex
        subproblem, and initializes the solver state. Must be called before solve().

        Example:
            Prior to calling the `.solve()` method it is necessary to initialize the problem

                problem = Problem(dynamics, constraints, states, controls, N, time)
                problem.initialize()  # Compile and prepare
                problem.solve()       # Run optimization
        """
        printing.intro()

        # Print problem summary
        printing.print_problem_summary(self.settings, self._lowered)

        # Enable the profiler
        pr = profiling.profiling_start(self.settings.dev.profiling)

        t_0_while = time.time()
        # Ensure parameter sizes and normalization are correct
        self.settings.scp.__post_init__()
        self.settings.sim.__post_init__()

        # Create compiled (vmapped) dynamics as new instances
        # This preserves the original un-vmapped versions in _lowered
        self._compiled_dynamics = Dynamics(
            f=jax.vmap(self._lowered.dynamics.f, in_axes=(0, 0, 0, None)),
            A=jax.vmap(self._lowered.dynamics.A, in_axes=(0, 0, 0, None)),
            B=jax.vmap(self._lowered.dynamics.B, in_axes=(0, 0, 0, None)),
        )

        self._compiled_dynamics_prop = Dynamics(
            f=jax.vmap(self._lowered.dynamics_prop.f, in_axes=(0, 0, 0, None)),
        )

        # Create compiled (JIT-compiled) constraints as new instances
        # This preserves the original un-JIT'd versions in _lowered
        # TODO: (haynec) switch to AOT instead of JIT
        compiled_nodal = [
            LoweredNodalConstraint(
                func=jax.jit(c.func),
                grad_g_x=jax.jit(c.grad_g_x),
                grad_g_u=jax.jit(c.grad_g_u),
                nodes=c.nodes,
            )
            for c in self._lowered.jax_constraints.nodal
        ]

        compiled_cross_node = [
            LoweredCrossNodeConstraint(
                func=jax.jit(c.func),
                grad_g_X=jax.jit(c.grad_g_X),
                grad_g_U=jax.jit(c.grad_g_U),
            )
            for c in self._lowered.jax_constraints.cross_node
        ]

        self._compiled_constraints = LoweredJaxConstraints(
            nodal=compiled_nodal,
            cross_node=compiled_cross_node,
            ctcs=self._lowered.jax_constraints.ctcs,  # CTCS aren't JIT-compiled here
        )

        # Generate solvers using compiled (vmapped) dynamics
        self._discretization_solver = get_discretization_solver(
            self._compiled_dynamics, self.settings
        )
        self._propagation_solver = get_propagation_solver(
            self._compiled_dynamics_prop.f, self.settings
        )

        # Build optimal control problem using LoweredProblem
        self._optimal_control_problem = optimal_control_problem(self.settings, self._lowered)

        # Get cache file paths using symbolic AST hashing
        # This is more stable than hashing lowered JAX code
        dis_solver_file, prop_solver_file = get_solver_cache_paths(
            self.symbolic,
            dt=self.settings.prp.dt,
            total_time=self.settings.sim.total_time,
        )

        # Compile the discretization solver
        self._discretization_solver = load_or_compile_discretization_solver(
            self._discretization_solver,
            dis_solver_file,
            self._parameters,  # Plain dict for JAX
            self.settings.scp.n,
            self.settings.sim.n_states,
            self.settings.sim.n_controls,
            save_compiled=self.settings.sim.save_compiled,
            debug=self.settings.dev.debug,
        )

        # Setup propagation solver parameters
        dtau = 1.0 / (self.settings.scp.n - 1)
        dt_max = self.settings.sim.u.max[self.settings.sim.time_dilation_slice][0] * dtau
        self.settings.prp.max_tau_len = int(dt_max / self.settings.prp.dt) + 2

        # Compile the propagation solver
        self._propagation_solver = load_or_compile_propagation_solver(
            self._propagation_solver,
            prop_solver_file,
            self._parameters,  # Plain dict for JAX
            self.settings.sim.n_states_prop,
            self.settings.sim.n_controls,
            self.settings.prp.max_tau_len,
            save_compiled=self.settings.sim.save_compiled,
        )

        # Initialize the PTR loop
        print("Initializing the SCvx Subproblem Solver...")
        self.cpg_solve = PTR_init(
            self._parameters,  # Plain dict for JAX/CVXPy
            self._optimal_control_problem,
            self._discretization_solver,
            self.settings,
            self._compiled_constraints,
        )
        print("✓ SCvx Subproblem Solver initialized")

        # Create fresh solver state
        self._state = SolverState.from_settings(self.settings)

        t_f_while = time.time()
        self.timing_init = t_f_while - t_0_while
        print("Total Initialization Time: ", self.timing_init)

        # Prime the propagation solver
        prime_propagation_solver(self._propagation_solver, self._parameters, self.settings)

        profiling.profiling_end(pr, "initialize")

    def reset(self):
        """Reset solver state to re-run optimization from initial conditions.

        Creates fresh SolverState while preserving compiled dynamics and solvers.
        Use this to run multiple optimizations without re-initializing.

        Raises:
            ValueError: If initialize() has not been called yet.

        Example:
            After calling `.step()` it may be necessary to reset the problem back to the initial
            conditions

                problem.initialize()
                result1 = problem.step()
                problem.reset()
                result2 = problem.solve()  # Fresh run with same setup
        """
        if self._compiled_dynamics is None:
            raise ValueError("Problem has not been initialized. Call initialize() first")

        # Create fresh solver state from settings
        self._state = SolverState.from_settings(self.settings)

        # Reset solution
        self._solution = None

        # Reset timing
        self.timing_solve = None
        self.timing_post = None

    def step(self) -> dict:
        """Perform a single SCP iteration.

        Designed for real-time plotting and interactive optimization. Performs one
        iteration including subproblem solve, state update, and progress emission.

        Note:
            This method is NOT idempotent - it mutates internal state and advances
            the iteration counter. Use reset() to return to initial conditions.

        Returns:
            dict: Contains "converged" (bool) and current iteration state

        Example:
            Call `.step()` manually in a loop to control the algorithm directly

                problem.initialize()
                while not problem.step()["converged"]:
                    plot_trajectory(problem.state.trajs[-1])
        """
        if self._state is None:
            raise ValueError("Problem has not been initialized. Call initialize() first")

        converged = PTR_step(
            self._parameters,  # Plain dict for JAX/CVXPy
            self.settings,
            self._state,
            self._optimal_control_problem,
            self._discretization_solver,
            self.cpg_solve,
            self.emitter_function,
            self._compiled_constraints,
        )

        # Return dict matching original API
        return {
            "converged": converged,
            "scp_k": self._state.k,
            "scp_J_tr": self._state.J_tr,
            "scp_J_vb": self._state.J_vb,
            "scp_J_vc": self._state.J_vc,
        }

    def solve(
        self, max_iters: Optional[int] = None, continuous: bool = False
    ) -> OptimizationResults:
        """Run the SCP algorithm until convergence or iteration limit.

        Args:
            max_iters: Maximum iterations (default: settings.scp.k_max)
            continuous: If True, run all iterations regardless of convergence

        Returns:
            OptimizationResults with trajectory and convergence info
                (call post_process() for full propagation)
        """
        # Sync parameters before solving
        self._sync_parameters()

        required = [
            self._compiled_dynamics,
            self._compiled_constraints,
            self._optimal_control_problem,
            self._discretization_solver,
            self._state,
        ]
        if any(r is None for r in required):
            raise ValueError("Problem has not been initialized. Call initialize() before solve()")

        # Enable the profiler
        pr = profiling.profiling_start(self.settings.dev.profiling)

        t_0_while = time.time()
        # Print top header for solver results
        printing.header()

        k_max = max_iters if max_iters is not None else self.settings.scp.k_max

        while self._state.k <= k_max:
            result = self.step()
            if result["converged"] and not continuous:
                break

        t_f_while = time.time()
        self.timing_solve = t_f_while - t_0_while

        while self.print_queue.qsize() > 0:
            time.sleep(0.1)

        # Print bottom footer for solver results as well as total computation time
        printing.footer()

        profiling.profiling_end(pr, "solve")

        # Store solution state
        self._solution = copy.deepcopy(self._state)

        return format_result(self, self._state, self._state.k <= k_max)

    def post_process(self) -> OptimizationResults:
        """Propagate solution through full nonlinear dynamics for high-fidelity trajectory.

        Integrates the converged SCP solution through the nonlinear dynamics to
        produce x_full, u_full, and t_full. Call after solve() for final results.

        Returns:
            OptimizationResults with propagated trajectory fields

        Raises:
            ValueError: If solve() has not been called yet.
        """
        if self._solution is None:
            raise ValueError("No solution available. Call solve() first.")

        # Enable the profiler
        pr = profiling.profiling_start(self.settings.dev.profiling)

        # Create result from stored solution state
        result = format_result(self, self._solution, self._solution.k <= self.settings.scp.k_max)

        t_0_post = time.time()
        result = propagate_trajectory_results(
            self._parameters, self.settings, result, self._propagation_solver
        )
        t_f_post = time.time()

        self.timing_post = t_f_post - t_0_post

        # Print results summary
        printing.print_results_summary(
            result, self.timing_post, self.timing_init, self.timing_solve
        )

        profiling.profiling_end(pr, "postprocess")
        return result
lowered: LoweredProblem property

Access the lowered problem containing JAX/CVXPy objects.

Returns:

Type Description
LoweredProblem

LoweredProblem with dynamics, constraints, unified interfaces, and CVXPy vars

parameters property writable

Get the parameters dictionary.

The returned dictionary automatically syncs to CVXPy when modified

problem.parameters["obs_radius"] = 2.0 # Auto-syncs to CVXPy problem.parameters.update({"gate_0_center": center}) # Also syncs

Returns:

Name Type Description
ParameterDict

Special dict that syncs to CVXPy on assignment

state: Optional[SolverState] property

Access the current solver state.

The solver state contains all mutable state from the SCP iterations, including current guesses, costs, weights, and history.

Returns:

Type Description
Optional[SolverState]

SolverState if initialized, None otherwise

Example

When using Problem.step() can use the state to check convergence etc.

problem.initialize()
problem.step()
print(f"Iteration {problem.state.k}, J_tr={problem.state.J_tr}")
u_unified property

Unified control interface (delegates to lowered.u_unified).

x_unified property

Unified state interface (delegates to lowered.x_unified).

_sync_parameters()

Sync all parameter values to CVXPy parameters.

Source code in openscvx/problem.py
def _sync_parameters(self):
    """Sync all parameter values to CVXPy parameters."""
    if self._lowered.cvxpy_params is not None:
        for name, value in self._parameter_wrapper.items():
            if name in self._lowered.cvxpy_params:
                self._lowered.cvxpy_params[name].value = value
initialize()

Compile dynamics, constraints, and solvers; prepare for optimization.

This method vmaps dynamics, JIT-compiles constraints, builds the convex subproblem, and initializes the solver state. Must be called before solve().

Example

Prior to calling the .solve() method it is necessary to initialize the problem

problem = Problem(dynamics, constraints, states, controls, N, time)
problem.initialize()  # Compile and prepare
problem.solve()       # Run optimization
Source code in openscvx/problem.py
def initialize(self):
    """Compile dynamics, constraints, and solvers; prepare for optimization.

    This method vmaps dynamics, JIT-compiles constraints, builds the convex
    subproblem, and initializes the solver state. Must be called before solve().

    Example:
        Prior to calling the `.solve()` method it is necessary to initialize the problem

            problem = Problem(dynamics, constraints, states, controls, N, time)
            problem.initialize()  # Compile and prepare
            problem.solve()       # Run optimization
    """
    printing.intro()

    # Print problem summary
    printing.print_problem_summary(self.settings, self._lowered)

    # Enable the profiler
    pr = profiling.profiling_start(self.settings.dev.profiling)

    t_0_while = time.time()
    # Ensure parameter sizes and normalization are correct
    self.settings.scp.__post_init__()
    self.settings.sim.__post_init__()

    # Create compiled (vmapped) dynamics as new instances
    # This preserves the original un-vmapped versions in _lowered
    self._compiled_dynamics = Dynamics(
        f=jax.vmap(self._lowered.dynamics.f, in_axes=(0, 0, 0, None)),
        A=jax.vmap(self._lowered.dynamics.A, in_axes=(0, 0, 0, None)),
        B=jax.vmap(self._lowered.dynamics.B, in_axes=(0, 0, 0, None)),
    )

    self._compiled_dynamics_prop = Dynamics(
        f=jax.vmap(self._lowered.dynamics_prop.f, in_axes=(0, 0, 0, None)),
    )

    # Create compiled (JIT-compiled) constraints as new instances
    # This preserves the original un-JIT'd versions in _lowered
    # TODO: (haynec) switch to AOT instead of JIT
    compiled_nodal = [
        LoweredNodalConstraint(
            func=jax.jit(c.func),
            grad_g_x=jax.jit(c.grad_g_x),
            grad_g_u=jax.jit(c.grad_g_u),
            nodes=c.nodes,
        )
        for c in self._lowered.jax_constraints.nodal
    ]

    compiled_cross_node = [
        LoweredCrossNodeConstraint(
            func=jax.jit(c.func),
            grad_g_X=jax.jit(c.grad_g_X),
            grad_g_U=jax.jit(c.grad_g_U),
        )
        for c in self._lowered.jax_constraints.cross_node
    ]

    self._compiled_constraints = LoweredJaxConstraints(
        nodal=compiled_nodal,
        cross_node=compiled_cross_node,
        ctcs=self._lowered.jax_constraints.ctcs,  # CTCS aren't JIT-compiled here
    )

    # Generate solvers using compiled (vmapped) dynamics
    self._discretization_solver = get_discretization_solver(
        self._compiled_dynamics, self.settings
    )
    self._propagation_solver = get_propagation_solver(
        self._compiled_dynamics_prop.f, self.settings
    )

    # Build optimal control problem using LoweredProblem
    self._optimal_control_problem = optimal_control_problem(self.settings, self._lowered)

    # Get cache file paths using symbolic AST hashing
    # This is more stable than hashing lowered JAX code
    dis_solver_file, prop_solver_file = get_solver_cache_paths(
        self.symbolic,
        dt=self.settings.prp.dt,
        total_time=self.settings.sim.total_time,
    )

    # Compile the discretization solver
    self._discretization_solver = load_or_compile_discretization_solver(
        self._discretization_solver,
        dis_solver_file,
        self._parameters,  # Plain dict for JAX
        self.settings.scp.n,
        self.settings.sim.n_states,
        self.settings.sim.n_controls,
        save_compiled=self.settings.sim.save_compiled,
        debug=self.settings.dev.debug,
    )

    # Setup propagation solver parameters
    dtau = 1.0 / (self.settings.scp.n - 1)
    dt_max = self.settings.sim.u.max[self.settings.sim.time_dilation_slice][0] * dtau
    self.settings.prp.max_tau_len = int(dt_max / self.settings.prp.dt) + 2

    # Compile the propagation solver
    self._propagation_solver = load_or_compile_propagation_solver(
        self._propagation_solver,
        prop_solver_file,
        self._parameters,  # Plain dict for JAX
        self.settings.sim.n_states_prop,
        self.settings.sim.n_controls,
        self.settings.prp.max_tau_len,
        save_compiled=self.settings.sim.save_compiled,
    )

    # Initialize the PTR loop
    print("Initializing the SCvx Subproblem Solver...")
    self.cpg_solve = PTR_init(
        self._parameters,  # Plain dict for JAX/CVXPy
        self._optimal_control_problem,
        self._discretization_solver,
        self.settings,
        self._compiled_constraints,
    )
    print("✓ SCvx Subproblem Solver initialized")

    # Create fresh solver state
    self._state = SolverState.from_settings(self.settings)

    t_f_while = time.time()
    self.timing_init = t_f_while - t_0_while
    print("Total Initialization Time: ", self.timing_init)

    # Prime the propagation solver
    prime_propagation_solver(self._propagation_solver, self._parameters, self.settings)

    profiling.profiling_end(pr, "initialize")
post_process() -> OptimizationResults

Propagate solution through full nonlinear dynamics for high-fidelity trajectory.

Integrates the converged SCP solution through the nonlinear dynamics to produce x_full, u_full, and t_full. Call after solve() for final results.

Returns:

Type Description
OptimizationResults

OptimizationResults with propagated trajectory fields

Raises:

Type Description
ValueError

If solve() has not been called yet.

Source code in openscvx/problem.py
def post_process(self) -> OptimizationResults:
    """Propagate solution through full nonlinear dynamics for high-fidelity trajectory.

    Integrates the converged SCP solution through the nonlinear dynamics to
    produce x_full, u_full, and t_full. Call after solve() for final results.

    Returns:
        OptimizationResults with propagated trajectory fields

    Raises:
        ValueError: If solve() has not been called yet.
    """
    if self._solution is None:
        raise ValueError("No solution available. Call solve() first.")

    # Enable the profiler
    pr = profiling.profiling_start(self.settings.dev.profiling)

    # Create result from stored solution state
    result = format_result(self, self._solution, self._solution.k <= self.settings.scp.k_max)

    t_0_post = time.time()
    result = propagate_trajectory_results(
        self._parameters, self.settings, result, self._propagation_solver
    )
    t_f_post = time.time()

    self.timing_post = t_f_post - t_0_post

    # Print results summary
    printing.print_results_summary(
        result, self.timing_post, self.timing_init, self.timing_solve
    )

    profiling.profiling_end(pr, "postprocess")
    return result
reset()

Reset solver state to re-run optimization from initial conditions.

Creates fresh SolverState while preserving compiled dynamics and solvers. Use this to run multiple optimizations without re-initializing.

Raises:

Type Description
ValueError

If initialize() has not been called yet.

Example

After calling .step() it may be necessary to reset the problem back to the initial conditions

problem.initialize()
result1 = problem.step()
problem.reset()
result2 = problem.solve()  # Fresh run with same setup
Source code in openscvx/problem.py
def reset(self):
    """Reset solver state to re-run optimization from initial conditions.

    Creates fresh SolverState while preserving compiled dynamics and solvers.
    Use this to run multiple optimizations without re-initializing.

    Raises:
        ValueError: If initialize() has not been called yet.

    Example:
        After calling `.step()` it may be necessary to reset the problem back to the initial
        conditions

            problem.initialize()
            result1 = problem.step()
            problem.reset()
            result2 = problem.solve()  # Fresh run with same setup
    """
    if self._compiled_dynamics is None:
        raise ValueError("Problem has not been initialized. Call initialize() first")

    # Create fresh solver state from settings
    self._state = SolverState.from_settings(self.settings)

    # Reset solution
    self._solution = None

    # Reset timing
    self.timing_solve = None
    self.timing_post = None
solve(max_iters: Optional[int] = None, continuous: bool = False) -> OptimizationResults

Run the SCP algorithm until convergence or iteration limit.

Parameters:

Name Type Description Default
max_iters Optional[int]

Maximum iterations (default: settings.scp.k_max)

None
continuous bool

If True, run all iterations regardless of convergence

False

Returns:

Type Description
OptimizationResults

OptimizationResults with trajectory and convergence info (call post_process() for full propagation)

Source code in openscvx/problem.py
def solve(
    self, max_iters: Optional[int] = None, continuous: bool = False
) -> OptimizationResults:
    """Run the SCP algorithm until convergence or iteration limit.

    Args:
        max_iters: Maximum iterations (default: settings.scp.k_max)
        continuous: If True, run all iterations regardless of convergence

    Returns:
        OptimizationResults with trajectory and convergence info
            (call post_process() for full propagation)
    """
    # Sync parameters before solving
    self._sync_parameters()

    required = [
        self._compiled_dynamics,
        self._compiled_constraints,
        self._optimal_control_problem,
        self._discretization_solver,
        self._state,
    ]
    if any(r is None for r in required):
        raise ValueError("Problem has not been initialized. Call initialize() before solve()")

    # Enable the profiler
    pr = profiling.profiling_start(self.settings.dev.profiling)

    t_0_while = time.time()
    # Print top header for solver results
    printing.header()

    k_max = max_iters if max_iters is not None else self.settings.scp.k_max

    while self._state.k <= k_max:
        result = self.step()
        if result["converged"] and not continuous:
            break

    t_f_while = time.time()
    self.timing_solve = t_f_while - t_0_while

    while self.print_queue.qsize() > 0:
        time.sleep(0.1)

    # Print bottom footer for solver results as well as total computation time
    printing.footer()

    profiling.profiling_end(pr, "solve")

    # Store solution state
    self._solution = copy.deepcopy(self._state)

    return format_result(self, self._state, self._state.k <= k_max)
step() -> dict

Perform a single SCP iteration.

Designed for real-time plotting and interactive optimization. Performs one iteration including subproblem solve, state update, and progress emission.

Note

This method is NOT idempotent - it mutates internal state and advances the iteration counter. Use reset() to return to initial conditions.

Returns:

Name Type Description
dict dict

Contains "converged" (bool) and current iteration state

Example

Call .step() manually in a loop to control the algorithm directly

problem.initialize()
while not problem.step()["converged"]:
    plot_trajectory(problem.state.trajs[-1])
Source code in openscvx/problem.py
def step(self) -> dict:
    """Perform a single SCP iteration.

    Designed for real-time plotting and interactive optimization. Performs one
    iteration including subproblem solve, state update, and progress emission.

    Note:
        This method is NOT idempotent - it mutates internal state and advances
        the iteration counter. Use reset() to return to initial conditions.

    Returns:
        dict: Contains "converged" (bool) and current iteration state

    Example:
        Call `.step()` manually in a loop to control the algorithm directly

            problem.initialize()
            while not problem.step()["converged"]:
                plot_trajectory(problem.state.trajs[-1])
    """
    if self._state is None:
        raise ValueError("Problem has not been initialized. Call initialize() first")

    converged = PTR_step(
        self._parameters,  # Plain dict for JAX/CVXPy
        self.settings,
        self._state,
        self._optimal_control_problem,
        self._discretization_solver,
        self.cpg_solve,
        self.emitter_function,
        self._compiled_constraints,
    )

    # Return dict matching original API
    return {
        "converged": converged,
        "scp_k": self._state.k,
        "scp_J_tr": self._state.J_tr,
        "scp_J_vb": self._state.J_vb,
        "scp_J_vc": self._state.J_vc,
    }