problem
Core optimization problem interface for trajectory optimization.
This module provides the Problem class, the main entry point for defining and solving trajectory optimization problems using Sequential Convex Programming (SCP).
Example
The prototypical flow is to define a problem, then initialize, solve, and post-process the results
problem = Problem(dynamics, constraints, states, controls, N, time)
problem.initialize()
result = problem.solve()
result = problem.post_process()
Problem
¶
Source code in openscvx/problem.py
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 | |
lowered: LoweredProblem
property
¶
Access the lowered problem containing JAX/CVXPy objects.
Returns:
| Type | Description |
|---|---|
LoweredProblem
|
LoweredProblem with dynamics, constraints, unified interfaces, and CVXPy vars |
parameters
property
writable
¶
Get the parameters dictionary.
The returned dictionary automatically syncs to CVXPy when modified
problem.parameters["obs_radius"] = 2.0 # Auto-syncs to CVXPy problem.parameters.update({"gate_0_center": center}) # Also syncs
Returns:
| Name | Type | Description |
|---|---|---|
ParameterDict |
Special dict that syncs to CVXPy on assignment |
state: Optional[SolverState]
property
¶
Access the current solver state.
The solver state contains all mutable state from the SCP iterations, including current guesses, costs, weights, and history.
Returns:
| Type | Description |
|---|---|
Optional[SolverState]
|
SolverState if initialized, None otherwise |
Example
When using Problem.step() can use the state to check convergence etc.
problem.initialize()
problem.step()
print(f"Iteration {problem.state.k}, J_tr={problem.state.J_tr}")
u_unified
property
¶
Unified control interface (delegates to lowered.u_unified).
x_unified
property
¶
Unified state interface (delegates to lowered.x_unified).
_sync_parameters()
¶
Sync all parameter values to CVXPy parameters.
Source code in openscvx/problem.py
initialize()
¶
Compile dynamics, constraints, and solvers; prepare for optimization.
This method vmaps dynamics, JIT-compiles constraints, builds the convex subproblem, and initializes the solver state. Must be called before solve().
Example
Prior to calling the .solve() method it is necessary to initialize the problem
problem = Problem(dynamics, constraints, states, controls, N, time)
problem.initialize() # Compile and prepare
problem.solve() # Run optimization
Source code in openscvx/problem.py
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 | |
post_process() -> OptimizationResults
¶
Propagate solution through full nonlinear dynamics for high-fidelity trajectory.
Integrates the converged SCP solution through the nonlinear dynamics to produce x_full, u_full, and t_full. Call after solve() for final results.
Returns:
| Type | Description |
|---|---|
OptimizationResults
|
OptimizationResults with propagated trajectory fields |
Raises:
| Type | Description |
|---|---|
ValueError
|
If solve() has not been called yet. |
Source code in openscvx/problem.py
reset()
¶
Reset solver state to re-run optimization from initial conditions.
Creates fresh SolverState while preserving compiled dynamics and solvers. Use this to run multiple optimizations without re-initializing.
Raises:
| Type | Description |
|---|---|
ValueError
|
If initialize() has not been called yet. |
Example
After calling .step() it may be necessary to reset the problem back to the initial
conditions
problem.initialize()
result1 = problem.step()
problem.reset()
result2 = problem.solve() # Fresh run with same setup
Source code in openscvx/problem.py
solve(max_iters: Optional[int] = None, continuous: bool = False) -> OptimizationResults
¶
Run the SCP algorithm until convergence or iteration limit.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
max_iters
|
Optional[int]
|
Maximum iterations (default: settings.scp.k_max) |
None
|
continuous
|
bool
|
If True, run all iterations regardless of convergence |
False
|
Returns:
| Type | Description |
|---|---|
OptimizationResults
|
OptimizationResults with trajectory and convergence info (call post_process() for full propagation) |
Source code in openscvx/problem.py
step() -> dict
¶
Perform a single SCP iteration.
Designed for real-time plotting and interactive optimization. Performs one iteration including subproblem solve, state update, and progress emission.
Note
This method is NOT idempotent - it mutates internal state and advances the iteration counter. Use reset() to return to initial conditions.
Returns:
| Name | Type | Description |
|---|---|---|
dict |
dict
|
Contains "converged" (bool) and current iteration state |
Example
Call .step() manually in a loop to control the algorithm directly
problem.initialize()
while not problem.step()["converged"]:
plot_trajectory(problem.state.trajs[-1])