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Context: Exploration
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Context: Real-Time Computational Methods

SCvxGEN

Successive Convexification
Nonconvex Trajectory 
Optimization Solvers

Modeling

Real-Time Computational Methods

Exploration Exploitation
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Current Relevant Papers

Modeling

Real Time Computational Methods

Exploration Exploitation

SciTech 2025
- Information Rate Model
- Direct Information Maximization

ICRA 2023
- Hazard Modeling
- Multitarget Trajectory 

Optimization

RA-L 2025
- Visibility Model
- Exploitation Methods 

11



Preliminaries: Frames  

12



Preliminaries: Frames  

- Inertial Frame, 

in      .

13



Preliminaries: Frames  

- Inertial Frame, 

- Body frame,

in      .

14



Preliminaries: Frames  

- Inertial Frame, 

- Body frame,

- Sensor frame,

in      .

15



Preliminaries: Optimal Control

Definition: Bolza Form

[Elango 2025]
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Mayer Form

[Liberzon 2011]

Preliminaries: Optimal Control
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[Elango 2025]

Preliminaries: Optimal Control

It’s desirable to express general 
problems in this form as the 
majority effort of gradient 
computation is consolidated in 
one place, leading to efficient 
numerical implementations.

Mayer Form
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Preliminaries: Optimal Control
Solvers for Nonlinear Programs (NLP’s) expressed in the Mayer Form can be split up into 
the following:

Direct NLP Solvers Sequential Convex Programming

IPOPT [Wachter 2006]
SNOPT [Gill 2006]
Knitro [Byrd 2006]

GuSTO [Bonalli 2019]
SCvx [Malyuta 2022]
CT-SCvx [Elango 2025]
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Preliminaries: Optimal Control
Solvers for Nonlinear Programs (NLP’s) expressed  in the Mayer Form can be split up into 
the following:

Direct NLP Solvers Sequential Convex Programming

IPOPT [Wachter 2006]
SNOPT [Gill 2006]
Knitro [Byrd 2006]

Shortcomings:
- Lack convergence guarantees
- Require 2nd Order Information
- Unsuitable for real-time 

applications
- No or limited continuous time 

constraint satisfaction 
Benefits:
- Less Tuning
- Higher accuracy from 2nd Order 

info

GuSTO [Bonalli 2019]
SCvx [Malyuta 2022]
CT-SCvx [Elango 2025]

Shortcomings:
- Requires decent initial guess
- Many tuning parameters
- Requires models to be locally near 

linear
Benefits:
- Only requires C1 functions
- Can have continuous time 

constraint satisfaction
- Real-time capable 29



Preliminaries: Optimal Control

As I am concerned with problems that require real-time computation and continuous time 
constraint satisfaction, I used CT-SCvx to solve the problems modeled in this work.
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Preliminaries: CT-SCvx
Path Constraint 
Reformulation

Optimal Control 
Problem

[Elango 2025]

Parameterization 

We need some way to parameterize our 
control in continuous time.

Zero Order Hold (ZOH) keeps the 
control signal constant for the window.
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Preliminaries: CT-SCvx
Path Constraint 
Reformulation

Optimal Control 
Problem

[Elango 2025]

Parameterization 

We need some way to parameterize our 
control in continuous time.

First Order Hold (FOH) is a piecewise 
linear interpretation.
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Preliminaries: CT-SCvx
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Preliminaries: CT-SCvx - Convexity
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Preliminaries: CT-SCvx - Convex Optimization

“Convexification”
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Preliminaries: CT-SCvx
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Roadmap: Visibility Modeling
Visibility Modeling

Modeling

Real-Time Computational Methods

Exploration Exploitation
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Visibility Modeling: Goal

Visibility modeling aims to establish a sensor-agnostic mathematical model 
that determines if a spatial element is within the line-of-sight of a sensor.
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Visibility Modeling: Literature
Visibility Modeling has been studied in the context of drones and other aerial platforms

Using cameras under the pinhole assumption, minimize the angle between the boresight 
vector of the sensor and the point to be contained within the LoS [Papanikolopoulos 
1993, Hurak 2012, Falanga 2018].

• Limitations: Doesn’t offer guarantees of containing the target point within LoS, 
overly conservative
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Visibility Modeling: Literature
Visibility Modeling has been studied in the context of drones and other aerial platforms

Using the dual quaternion [Reynolds 2019] and dot product [Malyuta 2023, Buckner 
2024] forms of a symmetric L2 norm strictly, these works constrain a point to reside 
within the LoS of the view cone

• Limitations: Restricted to symmetric 2-norm
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Visibility Modeling

We will define a view cone,    , as the region of 
Euclidean space that is visible to a sensor.

Figure: 3-Dimensional  
View Cone

[Hayner 2025] 55



Visibility Modeling: Norm Cone

Mathematically we can express the cone,   , as follows, 

Definition: N-Dimensional Norm Cone

where,

Figure: 3-Dimensional  
Second-Order Cone

[Boyd, 2004] 56
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Visibility Modeling: Norm Cone

Mathematically we can express the cone,   , as follows, 

Definition: N-Dimensional Norm Cone

where,

a point in Euclidean space contained 
within

each element of   is the angle of the cone in the 
corresponding lateral direction Figure: 3-Dimensional  

Infinity-Order Cone

[Hayner 2025] 59



Definition: Inertial to Sensor Transformation

Visibility Modeling: Transformation
Since points of interest are defined in the inertial frame, 
they must be resolved in the sensor frame to apply the 
visibility model.

Figure: 3-Dimensional Inertial 
to Sensor Transformation 

where,

[Hayner 2025] 60
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Definition: Inertial to Sensor Transformation

Visibility Modeling: Transformation
Since points of interest are defined in the inertial frame, 
they must be resolved in the sensor frame to apply the 
visibility model.

Figure: 3-Dimensional Inertial 
to Sensor Transformation 

where,

the position of the sensor in the inertial 
frame

the attitude of the sensor frame 
to the inertial frame 

[Hayner 2025] 62



Visibility Modeling: Full Model

Definition: Full Line-of-Sight Constraint

When the above constraint is satisfied, a point   , is in LoS

[Hayner 2025] 63



Visibility Modeling: Primary Takeaway

Key Contribution: This model parameterizes the norm type and lateral 
FOV angles to fit sensor requirements, allowing for a single unified visibility 
model to be used for cameras, LiDARs, and other exteroceptive sensors.

[Hayner 2025] 64



Roadmap: Exploitation

Line-of-Sight Planning

Modeling

Real-Time Computational Methods
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Exploitation: Goal

Exploitation methods aim to leverage specific a priori information within an 
environment to achieve a goal.
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Exploitation: Literature
Trajectory planning under LoS constraints has been explored extensively,

[Mellinger 2011] introduces the differentially flat form for quadrotors, 
parameterized by position and a yaw or heading angle. [Murali 2019, Spasojevic 
2020] leverage this heavily for its speed, and optimize first for a position trajectory 
and then a yaw angle trajectory.

• Limitation: The decoupled position then yaw scheme leads to sub-optimal results 
as the position trajectory is blind to the needs of perception. 
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Exploitation: Literature
Trajectory planning under LoS constraints has been explored extensively,

[Zhou 2021, Tordesillas 2022] introduces a coupled position/yaw methods which 
still leverage the differentially flat quadrotor model. [Penin 2018] further leverages 
differential flatness and ensures the vehicle maintains LoS using a symmetric 2-norm 
and avoids occlusion from spherical obstacles.

• Limitations: Restricted to differentially flat systems and symmetric 2-norm cones
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Exploitation: Drone Racing under LoS

Drone racing with relative navigation 
presents a challenge where continuous 
landmark visibility is critical for state 
estimation, necessitating the use of the 
visibility model.

Figure: Drone Racing under 
LoS Constraints
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Exploitation: 6 DoF Rigid Body Dynamics
State

[Szmuk 2019]
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Exploitation: 6 DoF Rigid Body Dynamics

Control

[Szmuk 2019]
State
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Exploitation: 6 DoF Rigid Body Dynamics

Position:

Velocity:

Attitude:

Angular Rate:

Control

Dynamics

[Szmuk 2019]
State
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Drone Racing under LoS

Figure: Drone Racing under 
LoS Constraints

Objective: Minimum Time
Constraints: Line-of-sight on keypoints
  Gates
  Boundary Constraints
  Box Constraints
Viewcone: Symmetric 2-Norm cone
Number of Keypoints: 10
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Drone Racing under LoS: Problem Form

where constraints without explicit time indices hold for all               .
[Hayner 2025] 74
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Drone Racing under LoS: Problem Form

[Hayner 2025]
where constraints without explicit time indices hold for all               .
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Drone Racing under LoS: Qualitative Results

[Hayner 2025] 79



Drone Racing under LoS: Qualitative Results

Time of Flight: 38.78s
Iterations: 12
Solve Time: 0.491s

[Hayner 2025] 80



Drone Racing under LoS: Quantitative Results

[Hayner 2025]

We sought to address the following questions in our experiments
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Drone Racing under LoS: Quantitative Results

[Hayner 2025]

We sought to address the following questions in our experiments

We used the following metric to address the above questions
1. LoS constraint violation over the full trajectory
2. The total runtime

Q1. How well does Continuous satisfy the LoS constraint throughout the entire trajectory 
compared to the baseline?

Q2. What tradeoffs are made to achieve better LoS violation performance?

Q3. How does Continuous scale as the problem size increase?
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Drone Racing under LoS: Quantitative Results

[Hayner 2025]

We sought to address the following questions in our experiments

We used the following metric to address the above questions
1. LoS constraint violation over the full trajectory
2. The total runtime
3. Original objective cost

Q1. How well does Continuous satisfy the LoS constraint throughout the entire trajectory 
compared to the baseline?

Q2. What tradeoffs are made to achieve better LoS violation performance?

Q3. How does Continuous scale as the problem size increase?
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Drone Racing under LoS: Quantitative Results

[Hayner 2025]

We sought to address the following questions in our experiments

We used the following metric to address the above questions
1. LoS constraint violation over the full trajectory
2. The total runtime
3. Original objective cost
4. The number of iterations

Q1. How well does Continuous satisfy the LoS constraint throughout the entire trajectory 
compared to the baseline?

Q2. What tradeoffs are made to achieve better LoS violation performance?

Q3. How does Continuous scale as the problem size increase?
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Exploitation: Dynamic Target Tracking

Dynamic target tracking also 
demonstrates how exploiting a target's 
kinematic info depends on the visibility 
model to ensure the persistent observation 
needed for accurate motion estimation.
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Dynamic Target Tracking

Objective: Minimum Fuel
Constraints: Line-of-sight on keypoint
  Min-Max range
  Boundary constraints
  Box constraints
Viewcone: Non-symmetric    -Norm cone
Number of Keypoints: 1
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Dynamic Target Tracking: Augmented 
Fuel Dynamics

We can augment the 6-DoF rigid body dynamics with the 
2-Norm of fuel to model the problem in the Mayer form.

Position:

Velocity:

Attitude:

Angular Rate:

Dynamics

Fuel:

[Hayner 2025]
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Dynamic Target Tracking: Problem Form

where constraints without explicit time 
indices hold for all               .
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Dynamic Target Tracking: Problem Form

[Hayner 2025]
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Dynamic Target Tracking: Qualitative Results
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Dynamic Target Tracking: Qualitative Results

Total Fuel: 364.72
Iterations: 17
Solve Time: 0.316s

[Hayner 2025] 102
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Exploitation Takeaways
Q1. How well does Continuous satisfy the LoS constraint throughout the entire trajectory 
compared to the baseline?

 A1. Across both scenarios, the proposed method consistently shows either lower or 
equivalent LoS Violation to the baseline.
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Exploitation Takeaways
Q1. How well does Continuous satisfy the LoS constraint throughout the entire trajectory 
compared to the baseline?

 A1. Across both scenarios, the proposed method consistently shows either lower or 
equivalent LoS Violation to the baseline.

Q2. What tradeoffs are made to achieve better LoS violation performance?

 A2. Discrete better objective performance as it inherently solves a less constrained 
approximation of the original nonconvex problem

Q3. How does Continuous scale as the problem size increase?

 A3. As the discretization grid size increases, Continuous is significantly less affected 
than Discrete as the convex subproblem has significantly fewer nodal constraints
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Exploitation

Key Contribution: These formulations jointly optimize the full 
6-DoF dynamics under line-of-sight constraints while avoiding 
differential flatness and decoupled planning limitations.

[Hayner 2025] 108



Roadmap: Real-Time Computational Methods

Modeling

Real-Time Computational Methods
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OpenSCvx: Requirements

An effective general nonconvex trajectory optimization software should include:
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OpenSCvx: Requirements

An effective general nonconvex trajectory optimization software should include:
R1. Easy for non-expert users to express problems,
R2. Handle the largest set of problems as possible.
R3. Real-time performance,
R4. Agnostic to hardware backend.
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OpenSCvx ComparisonR1. Easy for non-expert users to express problems,
R2. Handle the largest set of problems as possible,
R3. Real-time performance,
R4. Agnostic to hardware backend.

SCvxGEN

R1 R2 R3 R4
Open source

Availability

Unreleased

Open source

Open source

Paid
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OpenSCvx: Problem Expression
Brachistochrone Problem
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OpenSCvx: Problem Expression

State, Control, and Time Instantiation
r = ox.State(”position", shape=(2,))

v = ox.State(”velocity", shape=(1,))
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r = ox.State(”position", shape=(2,))
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r.min = [0.0, 0.0]

v = ox.State(”velocity", shape=(1,))
v.max = [10.0]
v.min = [0.0]
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OpenSCvx: Problem Expression

State, Control, and Time Instantiation
r = ox.State(”position", shape=(2,))
r.max = [10.0, 10.0]
r.min = [0.0, 0.0]
r.initial = [0.0, 10.0]
r.final = [10.0, 5.0]

v = ox.State(”velocity", shape=(1,))
v.max = [10.0]
v.min = [0.0]
v.initial = [0.0]
v.final = [ox.Free(10.0)]
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OpenSCvx: Problem Expression

theta = ox.Control("theta", shape=(1,))

State, Control, and Time Instantiation
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OpenSCvx: Problem Expression

theta = ox.Control("theta", shape=(1,))
theta.max = [100.5]
theta.min = [0.0]

State, Control, and Time Instantiation
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OpenSCvx: Problem Expression

theta = ox.Control("theta", shape=(1,))
theta.max = [100.5]
theta.min = [0.0]
theta.guess = linspace(5, 100.5, n)

State, Control, and Time Instantiation

124



OpenSCvx: Problem Expression

theta = ox.Control("theta", shape=(1,))
theta.max = [100.5]
theta.min = [0.0]
theta.guess = linspace(5, 100.5, n)

time = ox.Time()

State, Control, and Time Instantiation
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OpenSCvx: Problem Expression

theta = ox.Control("theta", shape=(1,))
theta.max = [100.5]
theta.min = [0.0]
theta.guess = linspace(5, 100.5, n)

time = ox.Time()
time.initial = 0.0
time.final = ox.Minimize(total_time)

State, Control, and Time Instantiation
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OpenSCvx: Problem Expression

theta = ox.Control("theta", shape=(1,))
theta.max = [100.5]
theta.min = [0.0]
theta.guess = linspace(5, 100.5, n)

time = ox.Time()
time.initial = 0.0
time.final = ox.Minimize(total_time)
time.min = 0.0
time.max = total_time

State, Control, and Time Instantiation
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OpenSCvx: Problem Expression

Dynamics
dynamics = {
 ”position": ox.Concat(
  velocity[0] * ox.Sin(theta[0]),  
  -velocity[0] * ox.Cos(theta[0]),
  )
}
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OpenSCvx: Problem Expression

Dynamics
dynamics = {
 ”position": ox.Concat(
  velocity[0] * ox.Sin(theta[0]),  
  -velocity[0] * ox.Cos(theta[0]),
  ),
 ”velocity": g * ox.Cos(theta[0]),
}
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OpenSCvx: Problem Expression

Constraints
constraint_exprs = []
for state in states:

constraint_exprs.extend([ox.ctcs(state <= state.max), 
          ox.ctcs(state.min <= state)])
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OpenSCvx: Problem Expression

Constraints
constraint_exprs = []
for state in states:

constraint_exprs.extend([ox.ctcs(state <= state.max), 
          ox.ctcs(state.min <= state)])

By default, the package will apply the box constraint to controls.
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OpenSCvx: Problem Expression

While this package focuses on minimizing the number of required inputs, an expert user 
can selectively override the symbolic expression interface and replace any algorithmic 
component (e.g. discretization, integration, SCvx) to fit their specific needs.
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OpenSCvx: Broad Problem Class 
Applicability

Mayer Form

To ensure broad applicability 
across problem classes, this 
package utilizes the CT-SCvx 
algorithm, which solves problems 
posed in the Mayer Form.
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OpenSCvx: Overview

Update Hyperparameters
Yes

No

1st 
Iteration?

Yes No

Converged?

Linearization & 
Discretization

Convex 
Subproblem Initial Guess

Path Constraint Reformulation
Time Dilation

OpenSCvx Symbolic 
Interface

States, Controls, 
Parameters, Dynamics, 
Path Constraints, 
Nodal Constraints, 
Nodal Costs

Lower Compile

ox.problem.initialize()

ox.problem.solve()

Augment Dynamics

Nonlinear Single Shot 
Propagation

ox.problem.post_process()
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OpenSCvx: Real-time Performance

Uses Python with a CVXPY and JAX 
backend to provide fast convex 
solvers, efficient automated 
vectorization, and a differentiable 
linear algebra library.
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OpenSCvx: Live Real-time Drone Racing

Objective: Min Time
Dynamics: 6DoF Drone 
Constraints: Gates
  Boundary
  Box
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OpenSCvx: Vectorized Real-Time 
Obstacle Avoidance

Time of Flight: 8.26
Iterations: 8
Solve Time: 0.064s
Obstacles: 1000
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OpenSCvx: Hardware/Software Agnostic

Since OpenSCvx heavily leverages JAX, we inherit lots of the benefits of 
being agnostic to the hardware backend, meaning we can seamlessly 
leverage GPU’s, allowing for problems to scale very large while remaining 
tractable.

Furthermore, JAX is an extremely widely adopted numerical computing 
engine, backed by Google, with over 800 unique contributors and is a 
dependency in over 45k repositories on GitHub.

140



OpenSCvx: Hardware/Software Agnostic

OpenSCvx has been used on:
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OpenSCvx

Key Contributions: This package provides a high-performance, scalable, 
non-convex trajectory optimization solver underneath an intuitive symbolic 
user interface.

[Hayner 2026] 142
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