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Current Relevant Papers

SciTech 2025

- Information Rate Model
- Direct Information Maximization

ICRA 2023

- Hazard Modeling
- Multitarget Trajectory

EE Exploration
Optimization ‘

RA-L 2025
- Visibility Model
- Exploitation Methods
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Preliminarnies: Frames

L - Inertial Frame,

B - Body frame,

In RN.
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Preliminaries: Frames

L - Inertial Frame,
By - Body frame,

Sy - Sensor frame,

In ]RN.
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[Elango 2025]
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Preliminaries: Optimal Control

Definition: Bolza Form
t; Running Cost Terminal Cost
min
x,u,t s —/t

subject to  @(t) = f(t,z(t),u(t)), t € [to,ts] Dynamics

L.(t,z(t),u(t))dt + L(ts,x(ts))

0

[Elango 2025]
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Preliminaries: Optimal Control

Definition: Bolza Form
t; Running Cost Terminal Cost

min /t Lo(t (), u(t)) dt + L(t 7, (L))

subject to  @(t) = f(t,z(t),u(t)), t € [to,ts] Dynamics
g(t, z(t),u(t)) <0,,, tE€ [to,tr] Inequality Constraints

[Elango 2025] b



Preliminaries: Optimal Control

Definition: Bolza Form
t; Running Cost Terminal Cost
J

win [ L(t,o(0), u(t)) e+ Lity, o(ty)
r,uw, f 0
subject to  @(t) = f(t,z(t),u(t)), t € [to,ts] Dynamics
g(t, z(t),u(t)) <0,,, tE€ [to,tr] Inequality Constraints
h(t,z(t),u(t)) = 0,,, tE€ [to,tr] Equality Constraints

[Elango 2025] 19



Preliminaries: Optimal Control

[Elango 2025]

Definition: Bolza Form

min
x,u,t s

t; Running Cost Terminal Cost
| Leta(e) ult) de -+ Lty alty)
t

0

subject to  @(t) = f(t,z(t),u(t)), t € [to,ts] Dynamics

<0,,, t€ |to,tf] Inequality Constraints
h(t,x(t), u(t 0

) t € |to,t¢] Equality Constraints
P(to, z(to),t¢,z(ts)) < 0, Inequality Boundary Constraints
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Preliminaries: Optimal Control

[Elango 2025]

Definition: Bolza Form

min
T, U tf

t; Running Cost Terminal Cost
| Leta(e) ult) de -+ Lty alty)
t

0

subject to  @(t) = f(t,z(t),u(t)), t € [to,ts] Dynamics

g(t,z(t),u(t)) S ng, UE [to,tf] Inequality Constraints
h(t,z(t),u(t)) = 0,,, t € [to,ts] Equality Constraints
P(tg, x(to), te, o x(t f)) < 0,,, Inequality Boundary Constraints
Q(to, z(to), ts, z(tf)) = 0, Equality Boundary Constraints
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Preliminaries: Optimal Control

Bolza Form

min /tfLr(t,:zz(t),u(t))dt+L(tf,$(tf))

x,u,ty

subject to  x(t) = f(t,x(t),u(t)), t € [to,ts]

g(tvx(t)vu(t)) < 0”97 t e [t()?tf]
Bt o), u(t) = 0, , ¢ € [to, /]
P(to, z(to), ty,z(ty)) < Onp
Q(t()?x(to)?tf?m(tf)) — OnQ

[Liberzon 2011]
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Preliminaries: Optimal Control

Bolza Form 5 — Lr( 7x(t) U(t))a f(tO) =0,
min /tfLr(t,lﬁ(t),U(t))dt+L(tf7x(tf)) -

x,u,ty

subject to  x(t) = f(t,x(t),u(t)), t € [to,ts]

e
|

g(tvx(t)vu(t)) < 0”97 t e [t()?tf]
Wt (1), ut) = On,, ¢ € [to 4]
P(to, z(to), tr, x(tf)) < Opp
Qto, z(to) tr, z(tr)) = Ong

[Liberzon 2011] =



Preliminaries: Optimal Control

t Bolza Form 5 — Lr(tax(t)vu(t))a f(tO) = 0,
xx%% /t Ly (t,x(t),u(t)) dt + L(ts, x(ts)) . B f( ,:E(t),u(t))_ =
wbiect to i) = (a0 u®), teltot] | Le(tx(t),ut)] ft,2(t) u(d))
g(t,z(t),u(t)) <0,, tcltty]
h(t,x(t),u(t)) =0,,, tE&€[to,tf] s
P(to, z(to), tr,x(tr)) < Onp .
Q(to, (to), ty, x(ts)) = Ong /to Lor (t7 :E(t), u(t)) dt_ f(tf)

[Liberzon 2011] .



Preliminaries: Optimal Control

[Liberzon 2011]

min
x,u,tf

subject to

Mayer Form

£(t) = f(t, x(t),u(t), tE€ [to,ts]
g(t,x(t),u(t)) <0,, tE€ o,y
h(t,z(t),u(t)) =0y,, tE€ [to,tf]
P(to, z(to), tr,x(ty)) < Opp
Q(to, x(to),t, x(ty)) = Ong
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Preliminaries: Optimal Control

min
x,u,t s

subject to

[Elango 2025]

Mayer Form

E(ty) + L(ty, x(ty))

2(t) = f(t,x(t),u(t)), tE [to,ty]
g(t,x(t),u(t)) <0, , tE€ [to,ty]
h(t,z(t),u(t)) =0p,, € [to,ty]
P(to, x(to), ty,z(ty)) < Onp
Q(to, z(to), tr, z(tf)) = Ong

It's desirable to express general
problems in this form as the
majority effort of gradient
computation is consolidated in
one place, leading to efficient
numerical implementations.

PAS)



Preliminaries: Optimal Control

Solvers for Nonlinear Programs (NLP's) expressed in the Mayer Form can be split up into
the following:

Direct NLP Solvers Sequential Convex Programming
IPOPT [Wachter 2006] GuSTO [Bonalli 2019]
SNOPT [Gill 2006] SCvx [Malyuta 2022]

Knitro [Byrd 2006] CT-SCvx [Elango 2025]
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Preliminaries: Optimal Control

Solvers for Nonlinear Programs (NLP’s) expressed in the Mayer Form can be split up into

the following:

Direct NLP Solvers Sequential Convex Programming

IPOPT [Wachter 2006] GuSTO [Bonalli 2019]
SNOPT [Gill 2006] SCvx [Malyuta 2022]
Knitro [Byrd 2006] CT-SCvx [Elango 2025]

Shortcomings: Shortcomings:

- Lack convergence guarantees - Requires decent initial guess

- Require 2" Order Information - Many tuning parameters

- Unsuitable for real-time - Requires models to be locally near
applications linear

- No or limited continuous time
constraint satisfaction
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Preliminaries: Optimal Control

Solvers for Nonlinear Programs (NLP’s) expressed in the Mayer Form can be split up into
the following:

Direct NLP Solvers Sequential Convex Programming

IPOPT [Wachter 2006] GuSTO [Bonalli 2019]
SNOPT [Gill 2006] SCvx [Malyuta 2022]
Knitro [Byrd 2006] CT-SCvx [Elango 2025]

Shortcomings: Shortcomings:

- Lack convergence guarantees - Requires decent initial guess

- Require 2" Order Information - Many tuning parameters

- Unsuitable for real-time - Requires models to be locally near
applications linear

- No or limited continuous time Benefits:
constraint satisfaction - Only requires C1 functions

Benefits: - Can have continuous time

- Less Tuning constraint satisfaction

- Higher accuracy from 2 Order - Real-time capable -

info



Preliminaries: Optimal Control

As | am concerned with problems that require real-time computation and continuous time
constraint satisfaction, | used CT-SCvx to solve the problems modeled in this work.

30



Preliminaries: CT-SCvx

Optimal Control
Problem

[Elango 2025]
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Preliminaries: CT-SCvx

Optimal Control Path Constraint
Problem 3 Reformulation

Path Constraints

[Elango 2025]

Discrete Constraints

32



Preliminaries: CT-SCvx

Optimal Control Path Constraint
Problem a Reformulation

Path Constraints

[Elango 2025]

Discrete Constraints
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Preliminaries: CT-SCvx

Optimal Control Path Constraint
Problem a Reformulation

Constraint
Violation

Path Constraints

[Elango 2025]

Discrete Constraints
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Preliminaries: CT-SCvx

Optimal Control Path Constraint
Problem a Reformulation

Constraint
Violation

Path Constraints

[Elango 2025]

Discrete Constraints
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Preliminaries: CT-SCvx

Optimal Control Path Constraint
Problem a Reformulation

Constraint
Violation

g(t, z(t), u(t)) < 0Vt € [to, 1]

[Elango 2025]
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Preliminaries: CT-SCvx

Optimal Control Path Constraint
Problem a Reformulation

Constraint
Violation

gt x(t), u(t)) < 0Vt € [to, t7] <= / " a(g(t,2(t), u(t))) dt = 0

where ¢(-) is the penalty function for g(+)

[Elango 2025] i



Preliminaries: CT-SCvx

Optimal Control Path Constraint
Problem a Reformulation

Constraint
Violation

We can introduce a new augmented state,

y(t) = alg(t, z(t), u(t)))

y(to) = y(ty)

[Elango 2025]
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Preliminaries: CT-SCvx

Optimal Control Path Constraint
Problem a Reformulation

Constraint
Violation

We can introduce a new augmented state,

y(t) = alg(t, z(t), u(t)))

y(to) = y(ty)

o o 2] [ faw

YA gt 2 (), u()))

=
|

|
|

|

[Elango 2025]




Preliminaries: CT-SCvx

Optimal Control Path Constraint N
Problem — Reformulation —> Parameterization

We need some way to parameterize our
control in continuous time.

t1 to 3 ) ls

[Elango 2025]
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Preliminaries: CT-SCvx

Optimal Control Path Constraint
Problem

—>  Reformulation —? Parameterization

We need some way to parameterize our
control in continuous time.

Zero Order Hold (ZOH) keeps the
control signal constant for the window.

[Elango 2025]

41



Preliminaries: CT-SCvx

Optimal Control Path Constraint N
Problem — Reformulation —> Parameterization

u(t)

We need some way to parameterize our
control in continuous time.

First Order Hold (FOH) is a piecewise
linear interpretation.

t1 to 3 ) ls

[Elango 2025]
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Preliminaries: CT-SCvx
x(t)

Optimal Control Path Constraint N
Problem — Reformulation —> Parameterization

!
//\-
"

Multishooting Discretization

tl tQ t3 t4 t5
[Elango 2025]
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Preliminaries: CT-SCvx
z (1)

Optimal Control Path Constraint N
Problem — Reformulation —> Parameterization

-

Multishooting Discretization

tl tQ t3 t4 t5
[Elango 2025]
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Preliminaries: CT-SCvx
x(t)

Optimal Control Path Constraint

Problem 3 Reformulation

t to 3 ty s
[Elango 2025]

SN SRR

—> Parameterization

!

Multishooting Discretization
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Preliminaries: CT-SCvx

Optimal Control Path Constraint
Problem Reformulation

!
— -

—> Parameterization
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Preliminaries: CT-SCvx - Convexity

Convex

[|z[l, <1 Az < b |Az —bl|s < Tz +d

P-Norm Ball Halfspace Second Order Cone
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Preliminaries: CT-SCvx - Convexity

Convex Nonconvex

|z||, < 1 Ax < b | Az —bl]s <c'z+d '

P-Norm Ball Halfspace Second Order Cone
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Preliminaries: CT-SCvx - Convex Optimization

Non-Convex Convex
No guarantee of... Cost Function Cost Function
Non-Convex Convex

Constraints Constraints

49



Preliminaries: CT-SCvx

Optimal Control Path Constraint N
Dralller Reformulation —# Parameterization

, !
-—>-

_‘_-

=S

T

Solution
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Roadmap: Visibility Modeling

Visibility Modeling

Modeling

%ploration Eprontatlc\
/Real Time Computatlonal Methods

«
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Visibility Modeling: Goal

Visibility modeling aims to establish a sensor-agnostic mathematical model
that determines if a spatial element is within the line-of-sight of a sensor.

52



Visibility Modeling: Literature
Visibility Modeling has been studied in the context of drones and other aerial platforms

Using cameras under the pinhole assumption, minimize the angle between the boresight

vector of the sensor and the point to be contained within the LoS [Papanikolopoulos
1993, Hurak 2012, Falanga 2018].

* Limitations: Doesn't offer guarantees of containing the target point within LoS,
overly conservative
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Visibility Modeling: Literature
Visibility Modeling has been studied in the context of drones and other aerial platforms

Using the dual quaternion [Reynolds 2019] and dot product [Malyuta 2023, Buckner
2024] forms of a symmetric L2 norm strictly, these works constrain a point to reside
within the LoS of the view cone 9

* Limitations: Restricted to symmetric 2-norm
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Visibility Modeling

We will define a view cone, /C, as the region of
Euclidean space that is visible to a sensor.

[Hayner 2025]

Figure: 3-Dimensional
View Cone
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Visibility Modeling: Norm Cone

Mathematically we can express the cone, IC, as follows,

Definition: N-Dimensional Norm Cone

K(e) ={(psY ', pY )lldiag(c)psy 7' < p¥ .}

where,

Figure: 3-Dimensional

Second-Order Cone

[Boyd, 2004] -



Visibility Modeling: Norm Cone

Mathematically we can express the cone, IC, as follows,

Definition: N-Dimensional Norm Cone

K(e) ={(psy ' p3,)lIdiag(a)psy 'l < p5,}

where,

1:N—1 N)

p=(p . p™V) € RY a point in Euclidean space contained

within KC ()

Figure: 3-Dimensional

Second-Order Cone

[Hayner 2025] i



Visibility Modeling: Norm Cone

Mathematically we can express the cone, IC, as follows,

Definition: N-Dimensional Norm Cone

K(e) ={(psy ' p3)lIdiag(a)psy || < ps,}

where,

1:N—1 N)

p=(p . p™V) € RY a point in Euclidean space contained

within KC ()

a € RY 71 each element of avis the angle of the cone in the
corresponding lateral direction

Figure: 3-Dimensional

Second-Order Cone

[Hayner 2025] i



Visibility Modeling: Norm Cone

Mathematically we can express the cone, IC, as follows,

Definition: N-Dimensional Norm Cone

K(e) ={(psy ' p3)lIdiag(a)psy || < ps,}

where,

D= (plzN_l,pN) e RY a point in Euclidean space contained
within /C () p

a € RY 71 each element of avis the angle of the cone in the

corresponding lateral direction . : :
Figure: 3-Dimensional

Infinity-Order Cone

[Hayner 2025] i



Visibility Modeling: Transformation

Since points of interest are defined in the inertial frame,
they must be resolved in the sensor frame to apply the
visibility model.

Definition: Inertial to Sensor Transformation

where,

Figure: 3-Dimensional Inertial
to Sensor Transformation

60

[Hayner 2025]



Visibility Modeling: Transformation

Since points of interest are defined in the inertial frame,
they must be resolved in the sensor frame to apply the
visibility model.

Definition: Inertial to Sensor Transformation

where,

rr, € RY, the position of the sensor in the inertial
frame

Figure: 3-Dimensional Inertial
to Sensor Transformation

61

[Hayner 2025]



Visibility Modeling: Transformation

Since points of interest are defined in the inertial frame,
they must be resolved in the sensor frame to apply the
visibility model.

Definition: Inertial to Sensor Transformation

where,

rr, € RY, the position of the sensor in the inertial

I o
frame

Rz, sy € SO(N),the attitude of the sensor frame Flgure: 3-Dimensional Inertial
to the inertial frame to Sensor Transformation

62

[Hayner 2025]



Visibility Modeling: Full Model

Definition: Full Line-of-Sight Constraint

1:N—1H _ [

gLoS = Hdiag(a)[RIN—hsN (pIN - 7QIN)] RIN—>8N (pIN — TIN)]N <0

When the above constraint is satisfied, a point p, is in LoS

[Hayner 2025] .



Visibility Modeling: Primary Takeaway

Key Contribution: This model parameterizes the norm type and

ateral

FOV angles to fit sensor requirements, allowing for a single unified visibility

model to be used for cameras, LiDARs, and other exteroceptive sensors.

[Hayner 2025]
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Roadmap: Exploitation

Modeling

\/
Exploration ||Exploitati ®e
xploitation i i .
Line-of-Sight Planning
/ReaI-Time Computational Methods\
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Exploitation: Goal

Exploitation methods aim to leverage specific a priori information within an
environment to achieve a goal.

66



Exploitation: Literature

Trajectory planning under LoS constraints has been explored extensively,

[Mellinger 2011] introduces the differential
parameterized by position and a yaw or head

y flat form for quadrotors,
ing angle. [Murali 2019, Spasojevic

2020] leverage this heavily for its speed, and
and then a yaw angle trajectory.

optimize first for a position trajectory

* Limitation: The decoupled position then yaw scheme leads to sub-optimal results
as the position trajectory is blind to the needs of perception.

67



Exploitation: Literature

Trajectory planning under LoS constraints has been explored extensively,

[Zhou 2021, Tordesillas 2022] introduces a coupled position/yaw methods which
still leverage the differentially flat quadrotor model. [Penin 2018] further leverages
differential flatness and ensures the vehicle maintains LoS using a symmetric 2-norm
and avoids occlusion from spherical obstacles.

* Limitations: Restricted to differentially flat systems and symmetric 2-norm cones

68



Exploitation: Drone Racing under LoS

Drone racing with relative navigation
oresents a challenge where continuous /
andmark visibility is critical for state \

estimation, necessitating the use of the
visibility model.

Figure: Drone Racing under
LoS Constraints
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Exploitation: 6 DoF Rigid Body Dynamics

Stat [Szmuk 2019]
datle

-
z=[r;, €eR® v €R? g ., €8° wh €R?| eRYV
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Exploitation: 6 DoF Rigid Body Dynamics

[Szmuk 2019]

State
-
z=[r;, €eR® v €R? g ., €8° wh €R?| eRYV
_ [T 3 T 37" 6
Control = [T)) e R® MJ e€R? €R
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Exploitation: 6 DoF Rigid Body Dynamics

[Szmuk 2019]
State
z=|rg, €eR® vl eR® ¢qg ., €8° wg, € ]RB]T c R’
Control ; — [TBT3 c R3 Mgg e R?’]T c RO
Dynamics
Position: 7, (1) = vz, (1),
: . 1
Velocity: (% (t) — EC(QB3—>I3 (t))T53 (t) + 975,
, 1
Attitllde.' QB3—>13 (t) — §Q(w83 (t))QB3—>Ig (t)7

Angular Rate: wa, () = J-1 (Mp, (t) — |wi, ()] x I, w5, (1))



Drone Racing under LoS

Objective: Minimum Time
Constraints: Line-of-sight on keypoints
Gates
Boundary Constraints
Box Constraints
Viewcone: Symmetric 2-Norm cone
Number of Keypoints: 10

Figure: Drone Racing under
LoS Constraints
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Drone Racing under LoS: Problem Form

min

rIg 7UI3 7CIB3 —7Z3 7(*)33 7T53 7M53 7tf

subject to

ty

rz,(0) = 0, A 0

4B3s—T5 (O) — qoa WB, (O) — W
T'Zs (tf) =Ty

t(t) = fepor(t, x(t), u(t))

0

gLOS(piIiga TIg (t), QB3_>1'3 (t), Oé) S 0, VZ - {]., 5 oo ,Nk;}
|47 (rz, (8) = "oz )lloo <1, Vi € {1,..., Ny}

T'min S 'z, (t> S I'max Umin S U4 (t) S Umax
{min S 4dB5—7s (t) S max Wmin S W, (t) S Wmax
Tmin S TBg (t) S Tmaxa Mmin S MBg (t) S Mmax

where constraints without explicit time indices hold for all ¢ € [0,t].

[Hayner 2025]
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Drone Racing under LoS: Problem Form

min ty
rIg 7UIS 7C_IB3 —7Z3 7w33 7T83 7M83 7tf

subject to  rz,(0) =7", v7,(0) =’

QB3—>13 (O) — q()? ng (O) - wO

I'Zs (tf) =Ty
2(t) = fepor(t, (1), u(t))
gLoS(pizga 'z, (t)y 4Bs—7s (t), OZ) S O, Y1 € {17 S ,Nk}

1A? (rz, (1) = ez ) loo <1, V5 €{1,..., Ny}
I'min S 'z, <t> S T'max Umin S VT, <t> S Umax

{min S 4dB5;—7I5 (t) S max Wmin S W, (t) S Wmax
Tmin S TBg (t) S Tmaxa Mmin S MBg (t> S Mmax

where constraints without explicit time indices hold for all ¢ € [0,%¢].
[Hayner 2025] &



Drone Racing under LoS: Problem Form

min ty
rIg 7UIS 7C_IB3 —7Z3 7w33 7T83 7M83 7tf

subject to  rz,(0) =7", v7,(0) =’

QB3—>13 (O) — q()? ng (O) - wO

I'Zs (tf) =Ty
ZC(t) — fGDOF(t,Qf(t); U(t))
gLoS(p%jSang (t)a 4Bs—13 (t)a O‘) <0, Vie {17 IR Nk}

1A? (rz, (1) = ez ) loo <1, V5 €{1,..., Ny}
I'min S 'z, <t> S T'max Umin S VT, <t> S Umax

{min S 4dB5;—7I5 (t> S max Wmin S W, (t) S Wmax
Tmin S TBg (t) S Tmaxa Mmin S MBg (t> S Mmax

where constraints without explicit time indices hold for all ¢ € [0,%¢].
[Hayner 2025] -



Drone Racing under LoS: Problem Form

min ty
rIg 7UIS 7C_IB3 —7Z3 7w33 7T83 7M5’3 7tf

subject to  rz,(0) =7", v7,(0) =’

QB3—>13 (O) — q()? ng (O) - wo

I'Zs (tf) =Ty
Zlf(t) — fGDOF(t,Qf(t); U(t))
gLOS(p%jSang (t)v 48B3 —T5 (t)v Oé) <0, Vi € {17 S Nk}

HAJ(TIB(t) _Téate,zg)HOO < 17 \V/j = {17"’7N9}
T'min S 'z, <t> S I'max Umin S VT, <t) S Umax

{min S 4dB;—7Z5 (t> S max Wmin S W, (t) S Wmax
Tmin S TBg (t) S Tmaxa Mmin S MBg (t) S Mmax

where constraints without explicit time indices hold for all ¢ € [0,%¢].
[Hayner 2025] 4



Drone Racing under LoS: Problem Form

min ty
rIg 7U13 7C]B3 —13 7w33 7T83 7M5’3 7tf

subject to  77,(0) =7r°, wvz,(0) ="

qgg—)Ig (O) — q07 wB3 (O) - wo

s (tf) =Ty
Zlf(t) — fGDoF(t7:C(t)7 U(t))
gLOS(p%jSaTIg (t)v 4B3—1Is (t)7 Oé) <0, Vie {17 200y Nk}

HAJ(TI:S(t) _Téate,zg)HOO < 17 \V/j = {17"’7Ng}
T'min S T, (t) S T'max Umin S UZ, (t) S Umax

Gmin < 4dBs—15 (t) S Gmax s Wmin S WB4 (t) S Wmax
Tmin S TBg (t) S TmaX7 Mmin S MBg (t) S Mmax

where constraints without explicit time indices hold for all ¢ € [0,%¢].
[Hayner 2025] -



Results

IVE
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Drone Racing under LoS: Qualitative Results

Time of Flight: 38.78s
Iterations: 12

Solve Time: 0.491s

[Hayner 2025] =



Drone Racing under LoS: Quantitative Results

We sought to address the following questions in our experiments

[Hayner 2025] o



Drone Racing under LoS: Quantitative Results

We sought to address the following questions in our experiments

Q1. How well does Continuous satisfy the LoS constraint throughout the entire trajectory
compared to the baseline?

[Hayner 2025] -



Drone Racing under LoS: Quantitative Results

We sought to address the following questions in our experiments

Q1. How well does Continuous satisfy the LoS constraint throughout the entire trajectory
compared to the baseline?
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Q1. How well does Continuous satisfy the LoS constraint throughout the entire trajectory
compared to the baseline?
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Drone Racing under LoS: Quantitative Results

We sought to address the following questions in our experiments

Q1. How well does Continuous satisfy the LoS constraint throughout the entire trajectory
compared to the baseline?

Q2. What tradeoffs are made to achieve better LoS violation performance?

Q3. How does Continuous scale as the problem size increase?
We used the following metric to address the above questions

LoS constraint violation over the full trajectory
The total runtime

Original objective cost

The number of iterations

= -
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Drone Racing under LoS: Quantitative Results
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Drone Racing under LoS: Quantitative Results
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Exploitation: Dynamic Target Tracking

Dynamic target tracking also
demonstrates how exploiting a target's
kinematic info depends on the visibility
model to ensure the persistent observation
needed for accurate motion estimation.
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Dynamic Target Tracking

Objective: Minimum Fuel
Constraints: Line-of-sight on keypoint
Min-Max range
Boundary constraints
Box constraints
Viewcone: Non-symmetric oo-Norm cone
Number of Keypoints: 1
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Dynamic Target Tracking: Augmented
Fuel Dynamics [Hayner 2025]

We can augment the 6-DoF rigid body dynamics with the
2-Norm of fuel to model the problem in the Mayer form.

Dynamics
Position: rz, (1) = vz, (1),
; . 1
Velocity: UZ5 (t) — EC(QB?) —13 (t))TBs (t) + 975,
, |
Attitllde.' qu — 13 (t) — 5 Q(C&JBS (t))qu — 13 (t)7
Angular Rate: g, (t) = Jg (Mg,(t) — [ws, (t)]x J,ws, (1)) ,

Fuel: f(t) — H [TBg (t) M[53 (t)} H2 o



Dynamic Target Tracking: Problem Form

[Hayner 2025]

min
’r‘Ig 7’013 7ql33 —1Ig ,WB?) 7f7Tl5’3 7M133 7tf

subject to

where constraints without explicit time
indices hold for all ¢ € [0, %]

f(tr)

T'Zs (O) — 7“0, L (O> - U,

dBs—T5 (O) — C]O, WB, (O) = W

f(0) =0

0

T = fGDoF (ta I(t)a u(t))
f(t> —3 H [TB:& (t) MBB (tﬂ H2

9JLoS (pI?) (t)v r'Zs (t)a dBs—15 (t), Ck) <0,
dmin S HTI;), (t) — PZ5 (t)HQ S dmaxa

Tmin < RIS SN < 1 (f ) N o

Imin < @Bs—7Zs (1) < Gmax, Wmin < W, (1) < Wnax
0 < f(t) Ol aTra e e (0 < Thax,

Mmin < Mgy (1) < Mmax, %



Dynamic Target Tracking: Problem Form

[Hayner 2025]

min
TIg 7’013 7QB3 —1Ig ,WB3 7f7T33 7M53 7tf

subject to

where constraints without explicit time
indices hold for all ¢ € [0, %]

f(tr)

rr,(0) = r0, AGES oY,
QB3—>13(0) — q07 WB; (0) = W

f(0) =0

0

& = fepor(t, x(t), u(t))
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Dynamic Target Tracking: Problem Form

[Hayner 2025]

min
’r‘Ig 7’013 7ql33 —1Ig ,(UB?) 7f7Tl5’3 7M53 7tf

subject to

where constraints without explicit time
indices hold for all ¢ € [0,¢/].

f(tr)

T, (O) — TO? Uz, (O> — v,
QB3—>13(0) — q07 WBs (0) = W

f(0) =0

0

T = fepor(t, (1), u(t))
ft) =||[Ts,(t) Mg, (®)]|l,

d1.0S (ng (t)a T, (t)a 4Bs—T5 (t)a Oé) S 07
dmin § Hrlg (t) — PZ5 (t)HZ § dmaX7

Pmin < SIS SETeNN e < . (f) & o

gmin < GEEESEOE=RGRIINNG) i, =~ WE. (1) = Wmax
0 < f(t) < fmax, Tmin < 1B,(t) < Thmax,
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Dynamic Target Tracking: Problem Form

[Hayner 2025]

min
TIg 7’013 7q53 —1Ig 7w33 7f7T33 7M53 7tf

subject to

where constraints without explicit time
indices hold for all ¢ € [0,%].

f(tr)

rr,(0) = r0, AGES oY,
QB3—>23(O) — q07 WB; (0) = W

f(0) =0

0

i = fopor(t, z(t), u(t))
f() = |[[Ts(t) Mz, ()],

gLOS (ng (t>7 TI3 (t)7 QB3_>IB (t)7 CV) S 07
dmin < [|r75(t) — pz5()]]2 < dmax,

Tmin < TZ(t) < Tmax, Vmin < U7, (t) < Vmax

Imin < @B3—75(t) < Gmax;  Wmin < Wi, (1) < Wmax
0 < f(t) £ fmax, Tmin < T8, (1) < Tiax,

Mpmin < Mp,(t) < Mmax e
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Dynamic Target Tracking: Qualitative Results

'
o

Total Fuel: 364.72
Iterations: 17
Solve Time: 0.316s

[Hayner 2025] hs



Dynamic Target Tracking: Quantitative Results
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Dynamic Target Tracking: Quantitative Results
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Exploitation Takeaways

Q1. How well does Continuous satisfy the LoS constraint throughout the entire trajectory
compared to the baseline?

A1l. Across both scenarios, the proposed method consistently shows either lower or
equivalent LoS Violation to the baseline.
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Exploitation Takeaways

Q1. How well does Continuous satisfy the LoS constraint throughout the entire trajectory
compared to the baseline?

A1l. Across both scenarios, the proposed method consistently shows either lower or
equivalent LoS Violation to the baseline.

Q2. What tradeoffs are made to achieve better LoS violation performance?

A2. Discrete better objective performance as it inherently solves a less constrained
approximation of the original nonconvex problem

Q3. How does Continuous scale as the problem size increase?

A3. As the discretization grid size increases, Continuous is significantly less affected
than Discrete as the convex subproblem has significantly fewer nodal constraints
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Exploitation

Key Contribution: These formulations jointly optimize the full
6-DoF dynamics under line-of-sight constraints while avoiding
differential flatness and decoupled planning limitations.

[Hayner 2025] R



Roadmap: Real-Time Computational Methods

Modeling

e
Exploration ||Exploitation

Op enSC%
Q —
/ReaI-Time Computational Methods\
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OpenSCvx: Requirements

An effective general nonconvex trajectory optimization software should include:
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OpenSCvx: Requirements

An effective general nonconvex trajectory optimization software should include:
R1. Easy for non-expert users to express problems,

R2. Handle the largest set of problems as possible.
R3. Real-time performance,

R4. Agnostic to hardware backend.

114



OpenSCvx Comparison

R1. Easy for non-expert users to express problems,
R2. Handle the largest set of problems as possible,
R3. Real-time performance,

R4. Agnostic to hardware backend.

Rl R2 R3 R4 Availability

M / / / / Open source

SCvxGEN / / / Unreleased
/ Open source

/ / Open source
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OpenSCvx: Problem Expression

Brachistochrone Problem

min Ly
r,v,0,t

s.t. r(to) =ro,r(ty) =1y
v(tg) = v
r, = vsin(6)
ry = —v cos(f)
v = g cos(f)
Tmin S 7 < Tmax

Umin S v S Umax \/.

Qmin S 0 S Qmax
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OpenSCvx: Problem Expression

State, Control, and Time Instantiation

r{%,igft Ly r = ox.State(”position", shape=(2,))
s.t. r(tg) = TQ,T(tf) = Tf
v(tg) = v

r, = vsin(f)

ry = —v cos(f)

v = gcos(6) v = ox.State(”velocity", shape=(1,))
Tmin < 7 < Tmax

Umin < U < Umax

Omin < 0 < Omax
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OpenSCvx: Problem Expression

in t
ot
s.t. r(to) =ro,r(ty) =1y
U(to) — Vo

r, = vsin(6)

ry = —v cos(f)
v = g cos(f)
"min = 7 < Tmax
Umin < UV < Umax
Omin < 0 < Omax

I

State, Control, and Time Instantiation

= ox.State(”position", shape=(2,))

. max
.min

= ox.State(”velocity", shape=(1,))

. max
.min

[10.0, 10.0]
(0.0, 0.0]

[10.0]
[0.0]
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OpenSCvx: Problem Expression

State, Control, and Time Instantiation

min ¢ r = ox.State(”position", shape=(2,))
e r.max = [10.0, 10.0]
S.t. r.min = [0.0, 0.0]
r.initial = [0.0, 10.0]
r.final = [10.0, 5.0]

ry = vsin(6)

ry, = —vcos(0)

v = g cos(f) v = ox.State("velocity", shape=(1,))
v.max = [10.0]
v.min = [0.0]
v.initial = [0.0]

0 <0 <0, v.final = [ox.Free(10.0)]
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OpenSCvx: Problem Expression

State, Control, and Time Instantiation

min ¢
r,v Bht theta = ox.Control("theta", shape=(1,))
s.t. r(to) =ro,r(ty) =1y
U(to) — Vo

r, = vsin(6)

ry = —v cos(f)
v = g cos(f)
Tmin <7 = Tmax
Umin < U X Umax
Omin < 0 < Omax
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OpenSCvx: Problem Expression

State, Control, and Time Instantiation

min ¢
0t theta = ox.Control("theta", shape=(1,))
s.t. r(to) = ro, r(tf) = 7 theta.max = [100.5]
(fo) 0,7(t1) 7 theta.min = [0.0]
U(to) — Vo

r, = vsin(6)

ry = —v cos(f)
v = g cos(f)
Tmin <7 = Tmax
Umin < U X Umax
Omin < 0 < Omax
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OpenSCvx: Problem Expression

in t
ol
s.t. r(to) =ro,r(ty) =1y
U(to) — Vo

r, = vsin(6)

ry = —v cos(f)
v = g cos(f)
Tmin <7 = Tmax
Umin < U X Umax
Omin < 0 < Omax

State, Control, and Time Instantiation

theta
theta
theta
theta

= ox.Control("theta", shape=(1,))
.max = [100.5]

.min = [0.0]

.guess = linspace(5, 100.5, n)
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OpenSCvx: Problem Expression

State, Control, and Time Instantiation
min Ly
0105t theta = ox.Control("theta", shape=(1,))

s.t. r(tg) = 1o, 7(t;) = r, theta.max = [100.5]
(to) 0, 7(t) / theta.min = [0.0]

U(Uﬁ:::UO theta.guess = linspace(5, 100.5, n)
r, = vsin(6)

ryy = —v cos(0) time = ox.Time()

v = g cos(f)

T"'min S T S T'max
Umin S v S Umax
Hmin S (9 S Hmax
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OpenSCvx: Problem Expression

State, Control, and Time Instantiation
min Ly
7005t theta = ox.Control("theta", shape=(1,))

s.t. r(tg) = 1o, 7(t;) = r, theta.max = [100.5]
(to) 0, 7(t) / theta.min = [0.0]

U(Uﬁ:::UO theta.guess = linspace(5, 100.5, n)
ry = v sin(0)

fy = —v cos(f) time = ox.Time()

. time.initial = 0.0

v = gcos(0) time.final = ox.Minimize(total time)

T"'min S T S T'max
Umin S v S Umax
Hmin S 6’ S Hmax
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OpenSCvx: Problem Expression

State, Control, and Time Instantiation
min Ly
7005t theta = ox.Control("theta", shape=(1,))

s.t. r(tg) = 1o, 7(t;) = r, theta.max = [100.5]
(to) 0, 7(t) / theta.min = [0.0]

U(Uﬁ:::UO theta.guess = linspace(5, 100.5, n)
ry = vsin(6)
fy = —v cos(f) time = ox.Time()
. time.initial = 0.0
v = gcos(0) time.final = ox.Minimize(total time)
Foin < 7 < P time.min = 0.0 |

time.max = total time

Umin S v S Umax
6)min S 6’ S Hmax
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OpenSCvx: Problem Expression

min ¢y Dynamics

r,v,0,t

s.t. r(tg) =ro,r(ty) =7y dynamics = {
"position'": ox.Concat(

v(to) = vo velocity[@] * ox.Sin(thetal@]),
Fp = vsin(6) —-velocity[@] * ox.Cos(thetal@]),
ry, = —vcos(0) ! )

v = g cos(f)

T"'min S T S T'max
Umin S v S Umax
Qmin S 9 S Qmax
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OpenSCvx: Problem Expression

min ¢y Dynamics

r,v,0,t

s.t. r(tg) =ro,r(ty) =7y dynamics = {
"position'": ox.Concat(

v(to) = vo velocity[@] * ox.Sin(thetal@]),
Iy = vsin(f) -velocity[@] * ox.Cos(thetal0]),
o ),

7y = —v cos() "velocity": g * ox.Cos(thetalQ]),

v = gcos(0) }
Tmin < 7 < Pmax
Umin < U < Umax
Omin < 0 < Onax
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OpenSCvx: Problem Expression

min Ly

rv,0,t Constraints
s.t.7(to) =70, 7(tf) = TF const raint_exprs = []
v(ty) = vo for state in states:

constraint_exprs.extend( [ox.ctcs(state <= state.max),

Ty = Usm(e) ox.ctcs(state.min <= state)])

ry = —v cos(f)
v = g cos(f)
Tmin < 7 < T'max
Umin S U < Umax
Omin < 0 < Omax
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OpenSCvx: Problem Expression

min Ly .
rv,0,t Constraints
s.t.7(to) =70, 7(tf) = TF const raint_exprs = []
v(ty) = vo for state in states:

constraint_exprs.extend( [ox.ctcs(state <= state.max),

Ty = Usm(e) ox.ctcs(state.min <= state)])

ry = —v cos(f)
v = g cos(f)
Tmin <7 < Tmax By default, the package will apply the box constraint to controls.

Umin S v S Umax
emin S (9 S Hmax
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OpenSCvx: Problem Expression

While this package focuses on minimizing the number of required inputs, an expert user
can selectively override the symbolic expression interface and replace any algorithmic
component (e.g. discretization, integration, SCvx) to fit their specific needs.

132



OpenSCvx: Broad Problem Class
Applicability

To ensure broad applicability

across prob
package uti

algorithm, which solves problems

em classes, this

1zes the CT-SCvx

posed in the Mayer Form.

[Liberzon 2011]

x,u,t s

subject to

Mayer Form

y(ty) + L(ty, x(ts))

z(t) = f(t,x(t),ult)), tE€ to,ts]
g(t,x(t),u(t)) <0,,, tEcto,ty]
h(t,x(t),u(t)) =0,,, tE€ [to,tf]
P(to, z(to),tr,z(tr)) < 0pnp

Q(to, z(to), tr, x(tr)) = Ong
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OpenSCvx: CT-SCvx

[Elango 2025]



OpenSCvx: Overview

( )

ox.problem.initialize()

OpenSCvx Symbolic

Interface
— b > ——

\ J
4 ox.problem.solve () ‘ i \
lIIIIIIIIIIIIIl lIIIIIIIIII\

No

ox.problem.post_process()

. .

[Hayner 2026] s




OpenSCvx: Real-time Performance

_ CVXPY
Uses Python with a CVXPY and JAX

backend to provide fast convex
solvers, efficient automated
vectorization, and a differentiable

linear algebra library.
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OpenSCvx: Live Real-time Drone Racing

Objective: Min Time
Dynamics: 6DoF Drone
Constraints: Gates

Boundary
Box
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OpenSCvx: Hardware/Software Agnostic

Since OpenSCvx heavily leverages JAX, we inherit lots of the benefits of
being agnostic to the hardware backend, meaning we can seamlessly
leverage GPU's, allowing for problems to scale very large while remaining
tractable.

Furthermore, JAX is an extremely widely adopted numerical computing

engine, backed by Google, with over 800 unique contributors and is a
dependency in over 45k repositories on GitHub.
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OpenSCvx: Hardware/Software Agnostic

OpenSCvx has been used on: 00 R O S
00
00

T @ §

NVIDIA.



OpenSCvx

Key Contributions: This package provides a high-performance, scalable,

non-convex trajectory optimization solver underneath an intuitive symbolic
user interface.

[Hayner 2026] e
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