HALO: Hazard-Aware Landing Optimization (for Autonomous Systems)

Christopher R. Havner*, Samuel C. Buckner*, Daniel Broyles, Evelyn Madewell, Karen Leung, Behçet Açıkmeşe

* Both authors contributed equally.

William E. Boeing Department of Aeronautics & Astronautics University of Washington

October 1, 2024

Introduction

Problem Statement

Introduction

Objective

Develop a framework that enables autonomous aerial vehicles to land *safely* in *unknown* environments with only *depth* information on their surroundings.

Problem Statement

Introduction

Objective

Develop a framework that enables autonomous aerial vehicles to land *safely* in *unknown* environments with only *depth* information on their surroundings.

Problem Statement

Introduction

Objective

Develop a framework that enables autonomous aerial vehicles to land *safely* in *unknown* environments with only *depth* information on their surroundings.

Contributions

Two key algorithms developed and integrated (closed-loop) in the AirSim simulation environment:

- 1. Hazard-Aware Landing Site Selection (HALSS)
- 2. Adaptive Deferred-Decision Trajectory Optimization (Adaptive-DDTO)

Problem Motivation

Introduction

Mars helicopter

Problem Motivation

Introduction

Mars helicopter

Package delivery

Coarse Hazard Detection

Hazard Aware Landing Site Selection

Overview

Perform a coarse search over all the observed map, use a learning-based approach to classify safety, and identify regions to further search for landing sites.

Coarse Hazard Detection: Point Cloud Interpolation

Coarse Hazard Detection: Surface Normal

Coarse Hazard Detection: Bayesian Segmentation Network Hazard Aware Landing Site Selection

Coarse Hazard Detection: Variance-Aware Safety Map

Coarse Hazard Detection: Medial Axis Transform

Coarse Hazard Detection: Region Selection

Fine Hazard Detection

Hazard Aware Landing Site Selection

Overview

Given prospective regions, perform a fine search within each region, use a topographical-based approach to classify safety, and identify landing sites.

Fine Hazard Detection: Local LiDAR Resampling

Fine Hazard Detection: Local Surface Normal

Fine Hazard Detection: Local Angle Map

Fine Hazard Detection: Local Safety Map

Fine Hazard Detection: Local Medial Axis Transform

Fine Hazard Detection: Landing Site Selection

Adaptive-DDTO Adaptive Deferred-Decision Trajectory Optimization

High-Level Approach Adaptive-DDTO

High-Level Approach Adaptive-DDTO

Single-Target Trajectory Optimization

Objective:

Deferred-Decision Trajectory Optimization (DDTO) Adaptive-DDTO

Deferred-Decision Trajectory Optimization (DDTO) Adaptive-DDTO Autonomous Controls Lab

Deferred-Decision Trajectory Optimization (DDTO) Adaptive-DDTO Autonomous Controls Lab Deferred-Decision Trajectory Optimization (DDTO) Adaptive-DDTO

Problem

Targets can be lost while executing solution due to:

- 1. Perception updates
- 2. Dynamic changes in the environments
- 3. DDTO's tree-like structure

Deferred-Decision Trajectory Optimization (DDTO) Adaptive-DDTO

Problem

Targets can be lost while executing solution due to:

- 1. Perception updates
- 2. Dynamic changes in the environments
- 3. DDTO's tree-like structure

Solution

Adaptively recompute DDTO solutions whenever target count falls below a minimum threshold.

Simulation Results

Github Repository

GitHub.com/UW-ACL/HALO

University of Washington

Thanks for watching!

Extra Acknowledgements:

- Annika Singh
- Purnanand Elango
- National Science Foundation Graduate Research Fellowship Program (NSF GRFP)

LONDON2023 Autonomous Controls Lab

Autonomous Controls Laboratory (ACL) Controls & Trustworthy Robotics Laboratory (CTRL)