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Task: Given no a priori information about the terrain, we seek to 
build an model of the terrain to inform PDG algorithms   
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Work on exploitation phase
Tomita et al. 2024, Buckner et al, 2024, Hayner et al, 2023
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Map Representation.

The map is represented using Gaussian process regression.

Given samples of a function, Gaussian process regression finds a 
distribution of functions that the samples could have been drawn from.
A Gaussian process is defined by a mean function and a covariance 
function.
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- Covariance of GP over the 
full map
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Map Discretization.

The Gaussian process is sampled over a fine grid.
The covariance of the points is binned and averaged to get a coarse 
grid.
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Map Covariance Dynamics.

To model map covariance, we make the following assumptions:

When a given region of the environment is observed, its 
covariance will decrease and, when it is not observed, it 
will remain constant.

Assumption 1:

The map covariance is assumed to be uniformly 
decreased across the sensor's frame of view (FoV).

Assumption 2:
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Map Covariance Dynamics.

From Assumption 1, we choose to use a sigmoid function to decrease the 
covariance when points are within the LoS and leave them unchanged when they 
are not.

Determines how smoothed out 
the sigmoid is

-

Tunable Parameters:

- Determines how aggressively the 
covariance is reduced when 
observed



Map Covariance Dynamics.

Lastly, to ensure that the covariance doesn’t become negative, we use the 
following piecewise function.
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Position.

Velocity.

Attitude.

Angular Velocity.

System Dynamics

We use a 6-Degree of Freedom rigid body model with mass dynamics.
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System Dynamics

We use a 6-Degree of Freedom rigid body model with mass dynamics.



Nonlinear Trajectory Optimization Problem.





Sensor View

Map Covariance

Map Mean



Key Takeaways.

1. We propose an algorithm for maximizing information in a 
PDG scenario.

2. We embed this covariance as a state in our dynamics and 
minimize the integral.

3. We demonstrate the effectiveness of the proposed method 
in a high-fidelity simulated environment.



Acknowledgments

• Dr. Davis Adams for his gracious support during our testing at the NASA
Simulation, Emulation, Navigation, Sensing, and STAR laboratory

• NASA Space Technology Graduate Research Opportunities

• Office of Naval Research under grant N00014-17-1-2433

• Natural Sciences and Engineering Research Council of Canada (NSERC).


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

