Information-Aware Powered Descent Guidance for Entry, Descent, and Landing Christopher R. Hayner¹, Natalia Pavlasek¹,

Karen Leung¹, Behçet Açıkmeşe¹, John M. Carson III²

¹William E. Boeing Department of Aeronautics & Astronautics, University of Washington, Seattle WA ²NASA Johnson Space Center, Houston TX

Task: Given no *a priori* information about the terrain, we seek to build an model of the terrain to inform PDG algorithms

Exploration:

Explore the environment to obtain information to facilitate a safe landing that satisfies mission objectives

Exploration:

Explore the environment to obtain information to facilitate a safe landing that satisfies mission objectives

Exploitation: Exploit information to determine a safe landing site and commit to landing

Exploration: Explore the environment to obtain information to factor a safe landing that sufficients mission objectives

Exploitation: Work on exploitation phase Tomitatet al. 2024, Buckner et al, 2024, Hayner et al, 2023 and commit to landing Exploration: Explore the environment to obtain information to facilitate a safe landing that satisfies mission objectives

Exploration: Explore the environment to obtain information to facilitate a safe landing that satisfies mission objectives

Exploration: Explore the environment to obtain information to facilitate a safe landing that satisfies mission objectives

Map Representation.

The map is represented using Gaussian process regression.

Given samples of a function, **Gaussian process regression** finds a distribution of functions that the samples could have been drawn from. A Gaussian process is defined by a mean function and a covariance function.

Information map is obtained by fitting a Gaussian Process (GP) to point cloud data

Information map is obtained by fitting a Gaussian Process (GP) to point cloud data

- Covariance of GP over the full map

Greedy

Map Discretization.

The Gaussian process is sampled over a fine grid. The covariance of the points is binned and averaged to get a coarse grid.

Finely sampled Gaussian process.

Binned map.

Map Discretization.

The Gaussian process is sampled over a fine grid. The covariance of the points is binned and averaged to get a coarse grid.

Finely sampled Gaussian process.

Binned map.

To model map covariance, we make the following assumptions:

To model map covariance, we make the following assumptions:

Assumption 1:

When a given region of the environment is observed, its covariance will decrease and, when it is not observed, it will remain constant.

To model map covariance, we make the following assumptions:

Assumption 1:

When a given region of the environment is observed, its covariance will decrease and, when it is not observed, it will remain constant.

Assumption 2:

The map covariance is assumed to be uniformly decreased across the sensor's frame of view (FoV).

First, we define the norm cone $\,\mathcal{K}\,$

 $||A^C p_{\mathcal{S}}|| \le c^\top p_{\mathcal{S}}$ Convex in $\mathcal{P}_{\mathcal{S}}$

First, we define the norm cone $\,\mathcal{K}\,$

$$||A^C p_{\mathcal{S}}|| \leq c^\top p_{\mathcal{S}}$$
 Convex in $p_{\mathcal{S}}$

Lastly, to ensure that the covariance doesn't become negative, we use the following piecewise function.

$$\dot{\sigma}(p_{\mathcal{S}},t) = \begin{cases} \left(\frac{1-\delta}{1+e^{-\alpha \max\{0,\mathcal{K}(p_{\mathcal{S}})\}^2}} - (1-\delta)\right) & \text{if } \sigma(p_{\mathcal{S}},t) \ge 0\\ 0 & \text{otherwise} \end{cases}$$

System Dynamics

We use a 6-Degree of Freedom rigid body model with mass dynamics.

Mass.	$\dot{m} = -\alpha T_{\mathcal{B}}(t) _2,$
Position.	$\dot{r}_{\mathcal{I}}(t) = v_{\mathcal{I}}(t),$
Velocity.	$\dot{v}_{\mathcal{I}}(t) = \frac{1}{m} \left(C_{\mathcal{B} \to \mathcal{I}}(q_{\mathcal{B} \to \mathcal{I}}(t)) T_{\mathcal{B}}(t) \right) + g_{\mathcal{I}},$
Attitude.	$\dot{q}_{\mathcal{I}\to\mathcal{B}} = \frac{1}{2}\Omega(\omega_{\mathcal{B}}(t))q_{\mathcal{I}\to\mathcal{B}}(t),$
Angular Velocity.	$\dot{\omega}_{\mathcal{B}}(t) = J_{\mathcal{B}}^{-1} \left(M_{\mathcal{B}}(t) - \left[\omega_{\mathcal{B}}(t) \times \right] J_{\mathcal{B}} \omega_{\mathcal{B}}(t) \right)$

System Dynamics

We use a 6-Degree of Freedom rigid body model with mass dynamics.

$$\begin{split} & \text{Mass.} & \dot{m} = -\alpha ||T_{\mathcal{B}}(t)||_{2}, \\ & \text{Position.} & \dot{r}_{\mathcal{I}}(t) = v_{\mathcal{I}}(t), \\ & \text{Velocity.} & \dot{v}_{\mathcal{I}}(t) = \frac{1}{m} \left(C_{\mathcal{B} \to \mathcal{I}}(q_{\mathcal{B} \to \mathcal{I}}(t)) T_{\mathcal{B}}(t) \right) + g_{\mathcal{I}}, \\ & \text{Attitude.} & \dot{q}_{\mathcal{I} \to \mathcal{B}} = \frac{1}{2} \Omega(\omega_{\mathcal{B}}(t)) q_{\mathcal{I} \to \mathcal{B}}(t), \\ & \text{Angular Velocity.} & \dot{\omega}_{\mathcal{B}}(t) = J_{\mathcal{B}}^{-1} \left(M_{\mathcal{B}}(t) - [\omega_{\mathcal{B}}(t) \times] J_{\mathcal{B}} \omega_{\mathcal{B}}(t) \right), \\ & \text{Map Covariance.} & \dot{\sigma}(p_{\mathcal{S}}, t) = \begin{cases} \left(\frac{1-\delta}{1+e^{-\alpha \max\{0, \mathcal{K}(p_{\mathcal{S}})\}^{2}} - (1-\delta) \right) & \text{if } \sigma(p_{\mathcal{S}}, t) \geq 0 \\ 0 & \text{otherwise} \end{cases}, \end{split}$$

Nonlinear Trajectory Optimization Problem.

$$\min_{x,u} \int_{t_i}^{t_f} \sum_{i=1}^{N_{\text{grid}}} \sigma(p_{\mathcal{S},i}, t) dt$$

s.t. $\dot{x}(t) = f(x(t), u(t)),$
 $x_{\min} \leq x(t) \leq x_{\max},$
 $u_{\min} \leq u(t) \leq u_{\max},$
 $x(t) \in \mathcal{X},$
 $u(t) \in \mathcal{U},$
 $x(t_i) \in \mathcal{X}_{t_i},$

 $\forall t \in [t_i, t_f],$ $\forall t \in [t_i, t_f],$ $\forall t \in [t_i, t_f],$

Map Covariance

Key Takeaways.

- 1. We propose an algorithm for maximizing information in a PDG scenario.
- 2. We embed this covariance as a state in our dynamics and minimize the integral.
- 3. We demonstrate the effectiveness of the proposed method in a high-fidelity simulated environment.

Acknowledgments

- Dr. Davis Adams for his gracious support during our testing at the NASA Simulation, Emulation, Navigation, Sensing, and STAR laboratory
- NASA Space Technology Graduate Research Opportunities
- Office of Naval Research under grant N00014-17-1-2433
- Natural Sciences and Engineering Research Council of Canada (NSERC).

