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We wish to keep a set of keypoints within the Line-of-Sight (LoS)
of the robot throughout its movement

We consider this problem as LoS Guidance




Nonlinear Program

minir?ize L¢(ts, x(ty),u(ty)), Terminal Cost
x,u,ty
subject to  Z(t) = f u(t)), Dynamics

), c(x(t)), A%(t)), Line-of-Sight Constraint



Line-of-Sight Constraint




Line-of-Sight Constraint

Norm Cone Component
1A%ps (t)]l, < ¢ ps(t)
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Line-of-Sight Constraint




Line-of-Sight Constraint

Transformation Component

ps(t) = Clgs—B)C(as-z(t))(pz(t) —1rZ(t)) IC




Line-of-Sight Constraint

Transformation Component

ps(t) = Clgs—B)C(as-z(t))(pz(t) —1rZ(t)) IC




Line-of-Sight Constraint

Full Constraint

gros = |A°Cgs—8)Cas—1(t) (pz(t) — r7(t))|
—¢' Clgs=8)Cga—1(t)) (pz(t) — r7(t)) <0




Continuous-Time Successive Convexification CT-SCvx

Yes
® Solution



Constraint
Violation

g(t, x(t), u(t)) < On,

h(t, z(t), u(t)) = Onhw e [0,ty]

Elango et al. 2024



https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=n2Wsfa8AAAAJ&sortby=pubdate&citation_for_view=n2Wsfa8AAAAJ:4DMP91E08xMC

Constraint
Reformulation

g(t,x(t), u(t)) < On,

Wtz (), u(t)) = 0, €= /O max{0, g(z(8), w(t))}2 + h(z(t), u(t))2dt = 0



Constraint
Reformulation

y(t) = max{0, g(x(t), u(t))}” + h(z(t), u(t))’
y(0) = y(ty)



Constraint
Reformulation




System Dynamics

We use a 6-Degree of Freedom rigid body model

Position. rz(t) = vz(t),
i 1
1
Attitude. (T8 = §Q(w5<t))qz%3(t),

Angular Velocity.  ws(t) = Jg"' (Ms(t) — [wa(t)x] Jsws(t)),



As a baseline approach we solved the same problem but only applying
constraints at individual nodes

CT-LoS (Proposed) DT-LoS (Baseline)

minimize  AobjL (TN, un)+ minimize  AobjLf(zn, un) + Ave||vrl1+
T, z,u
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Lo = L4, TN = Lf,



We demonstrated both the proposed and baseline in two
challenging and representative scenarios.
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We sought to address the following questions in our experiments

Q1. How well does CT-LoS satisfy the LoS constraint throughout the entire trajectory compared to
the baseline?

Q2. What tradeoffs are made to achieve better LoS violation performance?

Q3. How does CT-LoS scale as the problem size increase?



We sought to address the following questions in our experiments

Q1. How well does CT-LoS satisfy the LoS constraint throughout the entire trajectory compared to
the baseline?

Q2. What tradeoffs are made to achieve better LoS violation performance?
Q3. How does CT-LoS scale as the problem size increase?

We used the following metric to address the above questions

1. LoS Constraint Violation over the full trajectory
2. The total runtime
3. Original Object Cost (Minimal Time or Minimal Fuel)

4. The number of iterations



Relative Navigation Scenario
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CT-LoS Scales much better with respect to discretization CT-LoS is significantly more performant than
grid size.

DT-LoS for LoS violation. However, it sacrifices
some objective performance
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Cinematography Scenario
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Takeaways

Q1. How well does CT-LoS satisfy the LoS constraint throughout the entire trajectory compared to
the baseline?

Al. Across both scenarios, the proposed method consistently shows either lower or
equivalent LoS Violation to the baseline.

Q2. What tradeoffs are made to achieve better LoS violation performance?

A2. DT-LoS better objective performance as it inherently solves a less constrained
approximation of the original nonconvex problem

Q3. How does CT-LoS scale as the problem size increase?

A3. As the discretization grid size increases, CT-LoS is significantly less affected than
DT-LoS as the convex subproblem has significantly fewer nodal constraints



Challenging Cases: Polytopic Containment
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Challenging Cases: Weird Norms
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Challenging Cases: Corkscrew Maneuver
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